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Introduction
A Mathematical model is a description of a system using 

mathematical concepts and language. The process of developing a 
mathematical model is termed mathematical modeling. Mathematical 
models are used not only in the natural sciences, but also in the social 
science (such as economics, psychology, sociology, and political 
science). Mathematical models can take many forms, including but not 
limited to dynamical systems, statistical models, differential equations, 
or game theoretic models. Mathematical modeling of metabolism is 
usually closely associated with changes in compound concentrations 
that are described in terms of rates of biochemical reactions [1].

Various aspects of plant physiology have been analyzed extensively 
with kinetic models, and the field has a history going back for more 
than two decades. Detailed surveys of these models, the pathways they 
are addressing, and the techniques used can be found in [2,3]. A recent 
review was devoted to a quantitative comparison and ranking of all the 
kinetic models that have been published on the Calvin–Benson cycle 
[4]. This information will not be repeated here; instead, the purpose of 
this section is 2-fold. First, a summary of recent plant kinetic models 
that have been published since the last comprehensive review by is 
presented [3].

Kinetic modeling is the most detailed and complex mathematical 
description of a metabolic network and constitutes an important 
branch in the growing fields of systems biology. Kinetics modelling is to 
express the stoichiometries and regulatory interactions in quantitative 
terms. The dynamics of metabolic networks are predominated by the 
activity of enzymes – proteins that have evolved to catalyze specific 
biochemical transformations. The activity and specificity of all enzymes 
determines the specific paths in which metabolites are broken down 
and utilized within a cell or compartment. Note that enzymes do not 
affect the position of equilibrium between substrates and products [5].

A detailed kinetic description of enzyme catalyzed reactions is 
paramount to kinetic modeling of metabolic networks-and one of 
the most challenging steps in the construction of large-scale models 
of metabolism Elaborate descriptions of the fundamentals of enzyme 
kinetics are found in a variety of monographs, most notably the book 
of  among many other works on the subject [6].

A metabolic network can be translated in mathematical terms by 
relatively easy means: the concentration of a metabolite is described 
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by a variable si. The rate of each enzymatic step can be described by 
enzyme kinetic rate laws, such as the Michaelis-Menten equation, as 
a function depending on metabolite concentration and parameters 
such as the maximal velocity of a reaction, or binding constants. A 
metabolic network that consists of m metabolic reactants (metabolites) 
interacting via a set of r-biochemical reactions or interconversions. 
Mathematical modeling of metabolism is usually closely associated 
with changes in compound concentrations that are described in terms 
of rates of biochemical reactions. More details on different methods 
for metabolic modelling are given in the recent comprehensive 
overview of computational models of metabolism [7]. As a result, 
in this communication we have arrived at an analytical expression 
corresponding to the concentration of substrate and product using 
Homotopy perturbation methods for all values of reaction/diffusion 
parameters.

Mathematical Formulation of Problems and Analysis
During an enzyme-kinetic models [8]
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Where S is imported into the modeled system by R1, converted to P by 
R2, and finally taken out of the system by R3 where Ki are parameters 
indicating the velocities of the reactions, S and P are the concentrations 
of the two metabolites. R1 Carries a constant flux, while R2 and R3 follow 
mass action kinetics; In case of R2 the product P is acting as an activator 
of the reaction. At this point it is important to account for reversibility 
as well as inhibition or activation of an enzyme, since omitting these 
effects is a common cause of unrealistic behavior [6].
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A general scheme (Figure 1) that represents the change in 
metabolite concentration is shown below: The differential equations for 
the metabolites can be established from Eq. (1) and Eq. (2) respectively
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where S and P are the concentrations of the two metabolites, Ds 
and Dp are the diffusion coefficients, Vmax are the maximal velocity of 
the enzymatic reaction, Km are the Michaelis- menten constant, K1, K2 
are parameters indicating the velocities of the reactions. In the above 
equations the initial and boundary conditions are given by 
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We introduce the following set of dimensionless variables: 
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The above non-linear differential equations are expressed in the 
following dimensionless form:                                                                                                                                     
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Where α, α1 and β are the saturation parameters, x is the 
dimensionless distance, m1 and m are diffusion parameters, u and v 
are the dimensionless concentration. The boundary conditions in non-
dimensional form for the studied cases are:

0 : 0, 0dvx u
dx

= = =                                                                                                                                      (10)

:1=x 1,0 == vu                                                                                                                                         (11)

Analytical Expression of the Concentration Using the 
New Homotopyperturbation Method

Recently, many authors have applied the Homotopy perturbation 

method to various problems and demonstrated the efficiency of the 
Homotopy perturbation method for handling non-linear structures 
and solving various physics and engineering problems [9-12]. This 
method is a combination of Homotopy in topology and classic 
perturbation techniques. Ji-Huan He used the HPM to solve the 
Lighthill equation, the duffing equation and Blasius equation [13-15]. 
The idea has been used to solve nonlinear boundary value problems, 
integral equations and many other problems [16,17]. The HPM is 
unique in its applicability, accuracy and efficiency. The HPM uses the 
imbedding parameter P as a small parameter and only a few iterations 
are needed to search for an asymptotic solution. Using this method 
(Appendix A), we can obtain the following solution to Eqs. 8 and 9 
(Appendix B).
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Eq. (12) and Eq. (13) represent the new simple analytical expression 
of the concentrations for all values of parameters m, α, α1, β.

Discussion
Eqs. (3) and (4) represents the approximation analytical expression 

of concentrations of substrate S and product P. The non linear Eqs. 
(8)-(9) are also solved by numerical methods. Our analytical results for 
the numerical concentration of substrate is compared with simulation 
results in Figure 2. (a)-(c) for various values parameter m, α, α1, β. Also 
the value of concentration of substrate u(x) is equal to zero when x=0 
and 1. From the Figure 2a, it is observed that the substrate concentration 
of u(x) is slowly increases when m increases for small value of other 
parameters and then it reaches the maximum values at x=0.5. Similarly, 
in Figure 2b, the value of concentration of substrate u(x) is slowly 
decreases when β decrease for large value of other parameters. Also 

 
Figure 1: Schematic diagram of the change in metabolite concentrations.

 

Figure 2: Normalized concentration profiles of substrate )(xu  from Eq. (12), 
for different values of βαα and,, 1m  when (a) 1 .01α = , .01α = , .01β = , 1 .01m =  
(b) 31 =α , 3=α , 31 =m , 3=m  (c) ,31 =α ,3=β ,3=β 3=m .Solid lines 
represent the analytical solution obtained in this work; dotted lines represent 
the numerical solution.
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value of concentration substrate u(x) increases when α decreases for 
large value of other parameters (Figure 2c).

Figure 3(a)-(c) represents the comparison of analytical expression 
of concentration of product with simulation results from the Figure 3a 
it is inferred that the concentration of product v(x) is slowly increases 
when small values of m1. In Figure 3b the product concentration v(x) 
is increases when β decreases for large value of α1 and m1. Also value of 
concentration of product v(x) increases when α1 increases for different 
value of saturation parameter β and diffusion parameter m1 (Figure 3c).

Conclusion
The time independent, non- linear reaction/diffusion equation has 

been formulated and solved analytically. An approximate analytical 
expression for the concentration of substrate and product are obtained 
by using the Homotopy perturbation method. The primary result of 

Figure 3: Normalized concentration profiles of product )(xv from Eq. (13), for 
different values of 1m , 1α and β  when (a) 1 .0001α = , .01β =  (b) 1 65α = , 1 65m =

 (c) .01β = , 1 65m = . Solid lines represent the analytical solution obtained in 
this work; dotted lines represent the numerical solution.

this work is simple approximate calculation of concentration for all 
possible values of parameters. This method can be easily extended to 
find the solution of all other non-linear reaction diffusion equations in 
metabolic modeling for various complex boundary conditions.
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Appendix A 
Approximate analytical solution of the concentration of the substrate and concentration of the product using new 

Homotopy perturbation method. In this appendix, solution of non-linear system of equations Eq. (8) and Eq. (9) Is 

derived using the new Homotopy perturbation method. 
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Supposing the approximate solutions of Eq.(A.1)and Eq.(A.2)have the form
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Substituting Eq. (A.3) into Eq. (A.1) and Eq. (A.3) into Eq. (A.2) (respectively), and equate the terms with the 

identical powers of p, we obtain 
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The initial conditions are as follows: 

0)1(;0)0( 00 ==== xuxu                                                                                    (A.8) 

1)1(;0)0( 00 ==== xvdxxdv                                                                           (A.9)  
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Solving the Eq.(A.4) and Eq.(A.6) and using the boundary conditions Eq.(A.8) and Eq.(A.9),  

we get 
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Substituting the values ofuo(x) in the Eq. (A.5) and solving the equations, using the boundary conditions Eq. 

(A.10) and Eq. (A.11), we can obtain the value ofu(x). Similarly we can get the value of v1(x) by solving the 

Eq. (A.7). When p=1, the approximate solution Eq. (A.3) becomes 

0100 uuu)x(u ≈+= (A.14) 

0100 )( vvvxv ≈+= (A.15) 

Using the above equations, we get Eq. (12) and Eq. (13) in the next. 

Appendix B 
Matlab/Scilab program to find the numerical solution of equations (8)-(9). 

function pdex4 

m = 0; 

x =linspace(0,1); 

t=linspace(0,1); 

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 

u1 = sol(:,:,1); 

u2 = sol(:,:,2); 

figure 

plot(x,u1(end,:)) 

title('u1(x,t)') 

xlabel('Distance x') 

ylabel('u1(x,2)') 

% -------------------------------------------------------------- 

figure 

plot(x,u2(end,:)) 

title('u2(x,t)') 

xlabel('Distance x') 

ylabel('u2(x,2)') 

% -------------------------------------------------------------- 

function [c,f,s] = pdex4pde(x,t,u,DuDx); 

c = [1;1]; 

f = [1;1] .* DuDx; 

m2=3; 

m1=3; 

alpha=3; 

beta=.01; 

alpha1=.0001; 

F1=m2-((alpha*u(2))/(1+beta*u(2))); 



F2=-m1*u(2)+((alpha1*u(2))/(1+beta*u(2))); 

s=[F1;F2]; 

% -------------------------------------------------------------- 

function u0 = pdex4ic(x); 

u0 = [0;0]; 

% -------------------------------------------------------------- 

function [pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t) 

pl=[ul(1)-0;0]; 

ql=[0;1]; 

pr=[ur(1)-0;ur(2)-1]; 

qr =[0;0]; 
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