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Introduction
Mathematical research in golf is of great interest because of the 

uniqueness of the golf ball. Many researchers have not ventured in this 
field which carries a lot of mathematical concepts [1]. Flight Trajectory 
which is a core term in golf refers to the path a ball takes after impact, 
while it is in the air. Besides the straight lines trajectories there are other 
types of trajectories namely: a pull, push, hook and slice as shown in 
Figure 1. A pull is when the ball starts its path to the left of its intended 
destination without spinning sideways while a push results when the 
ball starts its path to the right of its intended destination, also without 
spinning sideways [2-4]. A hook is a ball flight in which the ball 
curves from right to left due to a small amount of side-spin being 
imparted to it at impact. Similarly, a slice is a ball flight in which the 
ball curves from left to right, due to side-spin imparted to the ball 
at impact in the opposite direction from the one used to obtain the 
hook result [5-11]. Each of these terms is defined for a player using 
“right-handed” clubs, and changes meaning if the player uses “left-
handed” clubs.

Dimples are small indentations on the exterior of the golf ball. They 
are typically round in shape and vary in diameter from 2-5 mm and 
are about 0.2 mm deep. Modern golf balls have about 300-450 dimples 
of varying size arranged in a regular pattern on the surface of every 
ball. Dimples have been one of the most influential developments 
in golf ball design because they alter the dynamics of the ball’s flight 
in a way that gives golfers a significant amount of control over the 
height and shape of their shots. Some golf balls have patterns of round 
dimples but most manufacturers produce balls with dimple patterns 
in a variety of hexagonal shapes; the most common dimple patterns 
are the icosahedral, the dodecahedral, and the octahedral (Figure 2). 
The icosahedral pattern is based on a polyhedral with 20 identical 
triangular faces, much like a 20-sided die. Similarly, a dodecahedral is 
based on a polyhedral with 12 identical faces in the shape of pentagons. 
The octahedral is based on an 8-sided polyhedral with triangular faces. 
Some balls with icosahedral pattern have up to 500 dimples. Moreover, 
in balls such as the Nike PD2 shown in Figure 2, all the dimples are not 
of the same diameter; this is done with the sole aim of improving the 
ball’s performance during flight.

The depth and size of the dimples also affect the golf ball 
performance. Shallow dimples generate more spin on the golf ball than 
deep dimples. . On the other hand, deep dimples make a golf ball to 
spin less as compared to shallow dimples. Shallow dimples generally 
give the ball a lower trajectory and good control in the wind; whereas 
large dimples give the ball a higher trajectory and longer flight time 
[1-4]. Naruo and Mizota [5] worked on the influence of golf ball 
dimples on aerodynamic behaviour of the airflow around the ball using 
a wind tunnel and rotating device. By using golf balls whose dimples 
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Abstract
A mathematical model describing the flight motion of a golf ball is developed, and the effects of dimple 

characteristics are studied. Using the Newton’s second law of motion, the equations governing the motion of the 
golf ball are developed in three dimensions. In this development the size, depth and number of dimples are taken 
into account. By varying the dimple size, depth and number, the effects of these characteristics are simulated via a 
MatLab code in which the Dormand-Prince Runge Kutta method is implemented to solve the model equations. The 
results of the numerical simulations that show how the golf ball trajectory is influenced by the dimple characteristics 
such as dimple depth, size and number within the accepted range of the Reynolds number are displayed and 
discussed.

Figure 1: The possible flight trajectories which depend on how the golf ball 
is struck.
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have different depths, they found that shallower dimples resulted to 
the larger lift coefficient. However, when the depth of the dimples was 
much shallower, the lift coefficient was extremely small for slow winds 
of velocities below 30 m/s. The consequence of a small lift (coefficient) 
is that distance covered by the ball will be short. Additionally, dimple 
patterns that had a high lift coefficient at all velocities were researched 
by these authors. As a result, it was found that a golf ball with a dimple 
pattern that has extremely small dimples between large shallow dimples 
has a high lift coefficient at all velocities, including those below 30 m/s. 
Visualization of flow around a golf ball was conducted by introducing 
smoke in the experiment set-up and using a high-speed video camera to 
take pictures that were analysed by PIV (Particle Image Velocimetry). 
From the pictures a difference in the streamline distribution was noted 
for different dimple depths on the golf balls.

Layer separation and the drag force

A smooth (golf) ball will generate a large wake (the region of 
recirculating flow immediately behind a moving or a stationary blunt 
body) behind the ball, as there is much lower pressure behind the 
ball than in the front. The air will rush into the area of low pressure, 
exerting a pressure drag force on the smooth ball. This drag force 
hinders the forward motion of the ball since it acts in the direction 
opposite to that of ball motion. Therefore, the purpose of having a large 
number of dimples on a golf ball is based on the Euler’s principle 
which states that separation of the boundary layer (the layer of air 
molecules next to the surface of the golf ball) is likely to occur in 
regions where the pressure increases in the direction of the flow. So 
introduction of dimples on the golf ball ensures that the boundary 
layer does not separate until at the back part of the ball, resulting 
into a thin wake as shown in Figure 3.

Significance of the Reynolds number in the ball aerodynamics

In fluid flows, the Reynolds number (Re) is a dimensionless number 
that gives a measure of the ratio of inertial forces to viscous forces for 
some given flow conditions. The Reynolds number is an important 
parameter that describes whether flow conditions lead to laminar or 
turbulent flow. Laminar flow occurs when a fluid flows in parallel 
layers, with no disruption in the layers. Turbulent flow is a flow regime 
characterized by chaotic property changes. It is significant in the design 

of a model of any system in which the effect of viscosity is important 
in controlling the velocities or the flow pattern of a fluid and given by

Re VLρ
µ

= 					                  (1)

Where 

ρ=the density of the fluid;

V=the velocity of the fluid;

µ=the viscosity of the fluid;

L=the length or diameter of the fluid. 

The drag coefficient encountered in the drag force during the 
development of our governing equations of the flight of the ball, depends 
on the Reynolds number. This dependence is created because as stated 
above the Reynolds number determined the transition from laminar to 
turbulent regimes. This transition occurs at Re≈3 × 105, where a sharp 
drop in drag coefficient is experienced. Note that flows characterized 
by low Reynolds numbers are slow and orderly (laminar), whereas 
those characterized by high Reynolds number are fast and chaotic 
(turbulent). Since the golf ball we consider in our model development 
is dimpled and because the boundary layer changes from laminar to 
turbulent much sooner, we use a high value of the Reynolds number 
in the simulations.

In this study we address the modelling of the flight trajectory in 
three dimensions and taking in to account the empirical findings of the 
effects of dimple characteristics that has been achieved on aerodynamic 
behaviour. The main aim is to produce a mathematical model and 
perform numerical simulations of the trajectory of a golf ball in motion 
while taking into consideration the dimples and spin effects.

Model Formulation
The appropriate way of describing the trajectory of a golf ball is to 

take it as an object in motion and as such that, it then obeys the Newton 
second law of motion. This law states that the acceleration of an object 
depends on two things namely: the net forces acting upon the object 
and mass of the object. The forces that influence the flight motion of a 
golf ball are shown in Figure 4 and described briefly as below:

Figure 2: Range of golf balls with different dimple patterns:(Firoz et al. (2011)).
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Where fb=some function of two arguments. 

The original equation is then reduced to an equation involving only 
these two groups. Because the only unknown in the above equation is 
the drag force Fd, it is possible to express it as

21
2

d
c

F V Af
vAVρ

 
=   

 
				                  (6)

Or
21 (Re)

2d cf AV fρ= 				                   (7)

And

Cd=fc(Re)					                   (8)

by replacing fc(Re) with which reduces to Cd in eqn. (8) and noting 
that the drag force acts in the opposite direction of flight motion (V



),we get the drag force equation
21 ( V)

2Drag dF AC Vρ= −
 

				                (9)

Where ρ=the density of air at the altitude and temperature of the 
location where the golf ball is being played;

A=the cross-sectional area of the ball;

V


=the unit vector of the golf ball’s instantaneous velocity, 
implying that the drag is constantly changing;

Cd-dimensionless drag coefficient. 

Later, in this study we will let this coefficient depend on the dimple 
characteristics of the golf ball. This is because the dimples on the golf 
ball play a significant role in reducing the overall drag experienced by 
the ball during flight.

Lift force

This force acts perpendicular to the direction of motion (Figure 5). 
This lift force is also referred to as the Magnus force.

Drag force DragF


As the ball penetrates through the air, it pushes air molecules out of 
the way, whereby the air molecules apply a force equal in magnitude but 
in a direction opposite to the direction of motion of the ball as shown in 
Figure 4, whereby the ball is moving in the direction indicated by V


.

Suppose that the variables involved under some conditions are 
speed, Fluid Density, viscosity of the fluid, size of the body, expressed 
in terms of the frontal area and drag force. These five variables can 
be reduced to two dimensionless parameters: Drag coefficient Cd and 
Reynolds number Re.

When the drag force is expressed as part of a function of the other 
variables in the problem, we can have the expression:

fa (fd,V,A,ρ,v)=0					                (2)

Here fa=a function that takes five arguments. 

Now taking the right hand side to be zero in any system of units 
it is possible to express the relationship described in terms of only 
dimensionless groups using the Buckingham π theorem in dimensional 
analysis. In this case the two groups are the Reynolds number

 Re V A
v

=  					                 (3)

And the drag coefficient, given by

21
2

d
d

FC
AVρ

= 					                   (4)

Thus the function of the five variables in eqn. (2) may be replaced 
by another function of only two variables using eqns. (3) and eqn. (4):

Figure 3: Flow separation in a smooth sphere and a dimpled sphere 
respectively in motion:(http://www.aerospaceweb.org).

Figure 4: Forces acting on a golf ball.

http://www.aerospaceweb.org
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This lift force is formulated as below [6]:
21 (L)

2Lift lF AC Vρ=
   				                 (10)

Where ρ,A, L


 are as defined in the drag force and Cl is a 
dimensionless lift coefficient which we will let to depend on the dimple 
characteristics of the golf ball so as to study how these characteristics 
influence the flight trajectory of a golf ball and L


 is a unit vector 

perpendicular to ball velocity vector F


and its purpose is to enable us 
describe the lift force vector F


 Lift appropriately.

The total force acting on the golf ball during flight comprises the 
above stated forces, that is:

1 2 3
ˆˆ ˆV V i V j V k= + +


				               (11)

To elaborate more on the forces, we represent the forces and 
the unit vectors in play in a three dimensional coordinate system as 
illustrated in Figure 6:

Suppose that the golf ball flight trajectory is a space curve such that 
at some time instant, the position of the golf ball in flight is given by 
(X,Y,Z) . Suppose that at this position the ball’s velocity is given by the 
unit vector 

1 2 3
ˆˆ ˆV V i V j V k= + +

  and its projection on the -plane is given by 

pV


. Also let 1 2 3
ˆˆ ˆL L i L j L k= + +


 define a unit vector that is perpendicular 

V
 .θ is the angle the velocity vector makes with the z-axis, while ϕ is 

the azimuthal angle the projection of the velocity vector makes with 
the x-axis.

Here V1,V2,V3 are the golf ball’s velocity components in X,Y,Z 
directions respectively. From calculus of vectors, these velocity 
components can be expressed in spherical coordinates to obtain the 
velocity vector as below:

ˆˆ    sin cos i sin sin j cos kV θ ϕ θ ϕ θ+ +=
 		             (12)

The unit vector V


 is obtained by taking V


 and rotating it 
backwards  and while maintaining. This means that L


 will coincide 

with L


 and so the angle between L


 and the Z-axis will be θ. Using 

the trigonometric identities in calculus, we get that sin cos
2
πθ θ − = − 

 
 

and cos sin
2
πθ θ − = − 

 
. These results are then substituted in eqn. (12)

To get the unit vector L


 as:

2 3
ˆ ˆˆ ˆ ˆ ˆ  1             L i L j L k cos cos i cos sin j sin kL θ ϕ θ ϕ θ= + + = − − +


 (13)

Equations governing the motion of the golf ball

In view of the golf ball motion representation in Figure 6, and 
using the total forces, acting on this ball, as in eqn. (11) we apply the 
Newton’s second law of motion to yield:

m drag lift
dV mg F F
dt

= − + +


  			                (14)

( ) ( )
2 2

1
1 1

1 1m 0
2 2d l

dV AC V V AC V L
dt

ρ ρ= + − + −
 

 	            (15)

( ) ( )
2 2

2
2 2

1 1m 0
2 2d l

dV AC V V AC V L
dt

ρ ρ= + − + −
 

	             (16)

( ) ( )
2 2

3
3 3

1 1m
2 2d l

dV mg AC V V AC V L
dt

ρ ρ= + − + −
 

	            (17)

In eqn. (14) is the vector form representation of the equations that 
describe the motion of a golf ball of mass m, in flight in 3 dimensions. 
Since the golf ball flight trajectory is considered to be a space curve, we 
can express the velocity components as:

1 2 3, ,dX dY dZV X V Y V Z
dt dt dt

= = = = = =   		             (18)

Such that ( )2 2 2 1V X Y Z= + + =


    since V


 is a unit vector eqn. (12). 

Utilizing the relations in eqn. (18) we write the eqn. (14) in component 
form as follows:

In X-direction;

( )
2 21 1(sin cos ) cos sin

2 2d lmX AC V AC Vρ θ ϕ ρ θ ϕ= − + −
 

    (19)

In Y-direction 

( )
2 21 1(sin cos ) cos sin

2 2d lmY AC V AC Vρ θ ϕ ρ θ ϕ= − + −
 

    (20)

In Z-direction	  
21 (cos )

2 dmZ mg AC Vρ θ= − −
 			              (21)

Note that the gravitational force acts vertically downwards and so 
its vector is ˆg gk= − . The above systems of eqns., (19), (20), and (21) 

Figure 5: The lift force and the wake region (Aoki K. et al. (2009)).

Figure 6: Three dimensional representation of the unit vectors for the 
forces acting on a golf ball in motion.
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can be expressed in an alternative form which we find more useful in 
describing the flight motion. To obtain this other form, we need to 
first express the sines and cosines on the right hand side of the above 
equations in terms of X,Y and Z . To this end, consider the following 
figures, derived from Figure 7.

Then it follows that

3

2

sin ,cos

sin ,cos

p

p p p

V V Z
V V V

V Y X
V V V

θ θ

ϕ ϕ

= = =

= = =




  


  

			   (22)

Substituting eqn. (22) into eqns. (19, 20, and 21) we get the 
following alternative form of the equations:

1dX k V X k V ZX= − −
 

    				              (23)

1d

P

V
Y k V Y k YZ

V
= − +




   
				                (24)

1d pZ mg k V Z k V V= − − −
  

  			                (25)

 Where

11 [d,l]
2i

ACk f or i
m

ρ
= ∈

Incorporation of the golf ball dimple characteristics into the 
governing equations

The golf ball dimple size, depth and number significantly influence 
the flight trajectory and consequently determine how far the ball 
travels when played. Several experimental studies such as Naruo and 
Mizota [5], Baek and Kim [7], Alam et al. [8] and Aoki et al. [1-4] have 
shown that shallow dimples generate more spin of a golf ball than 
deep dimples. Additionally, these studies also revealed that small-
sized dimples generally result to a lower trajectory whereas large-sized 
dimples result to a higher trajectory and longer flight time.

Moreover, in these experiments, it was noted that having a good 
number of dimples on the golf ball ensures that the laminar boundary 
layer around the ball becomes turbulent sooner thus resulting to a 
reduction in drag force that opposes the ball motion.

Due to these findings, it is essential to take into account the dimple 
characteristics in development of a model that describes the flight 

motion of a golf ball. This study aims to achieve this by decomposing 
the drag and lift coefficients as:

Cd=Cd(size)+Cd(number)+Cd(depth)  		              (26)

Cl=Cl(size)+Cl(number)+Cl(depth)			                (27)

And define the contributions of the dimple size, number and depth 
to the drag and lift intuitively as; Baek and Kim [7].

The drag coefficient Cd changes in accordance with the size, depth 
and number of dimples in a golf ball. The coefficient for the number 
of dimples is determined using the interpolation of the experimentally 
given values to produce a hyperbolic function which is a function of 
critical Reynolds number and varied Reynolds’s number as below.

( )
Re*tanh 0.05

Re . dimd numberC
no of ples

 
= − × 

		             (28)

The coefficient for the dimple size is consituted from a linear 
interpolation from experimental data subject to the ratio of dimple size 
to the ball diameter [9].

( ) 0.25 2.046d size
cC
d

= − 				              (29)

Where Re∗=1×107 and Re=3×105 are the critical and varied 
Reynolds number respectively. Usually the drag coefficient has deep 
connections with this dimensionless number [9].

The coefficient for the dimple depth is also obtained from a linear 
interpolation of the same experimental data.

( ) 1.2 cos 100 0.005d depth
kC
d

  = − −    
		               (30)

( ) 1.2 cos 100 0.005l depth
kC
d

  = − −    
		              (31)

Cl(number)=norm.pdf(Re,200 × no. of dimples,9000)	            (32)

The Cl for dimple number was obtained by Bearman and Harvey 
[9] as a normal probabiliy distribution function with the mean being 
the value 200 × no. of dimples and the standard deviation as 9000.

Here 1 2 3  ,  ,   ,    X L x Y L y Z L z t Tτ= = = = indicates the ratio of dimple diameter to the golf ball 
diameter and 1 2 3  ,  ,   ,    X L x Y L y Z L z t Tτ= = = = is the ratio of dimple depth to the golf ball diameter. 

Having obtained the above eqns. (23 and 25) that model the motion 
of a golf ball in 3 dimensions; we then present, in the next section, the 
methods of solving these equations so as to obtain the flight trajectory 
and distances travelled along the golf fairway.

Figure 7: Representation of the velocity vector components, its magnitude and projection in 2 dimensions.
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Method of Solution
The model equations in non-dimensional form

To obtain the non-dimensional version of the eqns. (23 and 25) we 
note that the dimensions contained in our variables and parameters are 
lengths and time. For our case we choose the following relations for our 
lengths and time,

1 2 3  ,  ,   ,    X L x Y L y Z L z t Tτ= = = = 		              (33)

Where 1L , 2L  are the characteristic lengths in the dimensionless 
x and y directions to the target place, which can either be to the 
hole or a layup distance. The other characteristic length 3L in the 
dimensionless z direction is expressed in terms of the characteristic 
time and magnitude of gravity force as 

2
3   L gτ= . The characteristic 

speed can also be determined as 
2LV
τ

=
 since for a ball in flight, the 

velocity in the y direction must be significantly higher than that in the 
x and z directions, that is the ball travels furthest in the y direction 
to the expectation of the player. In view of this, we assume that the 
ball is teed primarily in the y direction, thus 1 2L L<< . Now using the 
relation in non-dimensional parameter above the equations of motion 
in component form becomes

1 1 1 3
2 d L

P

VL L L Lx K V x k xz
Vτ τ τ τ

= − +




   		             (34)

2 2 2 3
2 d L

P

VL L L Ly K V Y k yz
Vτ τ τ τ

= − +



 

		               (35)

3 3
2 d L p

L Lz g K V z k V V
τ τ

= − − +
  

 
			               (36)

Next we express the magnitudes of velocity and its projection in 
terms of the characteristic length and time as follows:

( )

( )

2 2 2
2 2 2 2 2 21 2 3

2 2 2

2 2
2 2 2 21 2

2 2p

L L LV X Y Z x y z

L LV X Y x y

τ τ τ

τ τ

 
= + + = + + 

 

 
= + = + 

 


     


   

	             (37)

Factoring out 2yL
τ


2 2
2 22 1 3 2

12 2 2 2
2 2

1yL L L yLV x z r
y L y Lτ τ

= + + =
  

 
 

		             (38)

2
22 1 2

22 2
2

1p
yL L yLV x r

y Lτ τ
= + =

  



			               (39)

Where 
2 2 2

2 2 21 3 1
1 22 2 2 2 2 2

2 2 2

1 1L L Lr x z and r x
y L y L y L

 
= + + = + 

 
 
  

Now using the eqns. (38) and (39) in the eqns. (34 and 36) we 
obtain the following set of non-dimensional equations

1
2 1 3

2
d l

rx K L xyr K L xz
r

= − +   			              (40)

2 1
2 1 3

2
d l

ry K L y r K yL yz
r

= − +   			               (41)

2
22

2 1
3

1 d L
Lz K L r yz K ry
L

= − − −   			               (42)

Next we write the system of eqns. (40)-(42) in a vector form, 
suitable for the subsequent sections. Let us define R


 and ( ),F t R

 

as the column vectors:

( )
( )
( )
( )

( )
( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

1

2

3

1 1 21 3
2

2 1 21 3
2

3 1 21

, ,

, , , ,

, ,

, ,

, ,

, , 1

d l

d l

d l

f x t y t z tx t

R t y t F t R f x t y t z t

z t f x t y t z t

xzf x t y t z t yr K L x K L
r y

zf x t y t z t yr K L y K L
r

Lf x t y t z t yr K L z K

  
  
 = = 
  
    
 

= − + 
 
 

= − + 
 

= − − +

  
  

   

   


   




   

    2
2

3

r y
L

 
 
 



                       (43)

Thus using the above column vectors together with relations (43) 
the system of equations becomes:

( )( ) ( ),
d R t

F t R
dt

=


  				               (44)

Subject to the initial conditions ( ) ( ) ( ) ( )( )0 0 0, ,R t x t y t z t=


   where 
the initial time is denoted by t0.

The Dormand-Prince Runge-Kutta method is used to numerically 
solve the modelled equations as outlined. The coefficients in this 
method are chosen in a manner that minimizes the error of the fifth 
order solution, which is an advancement of the known Feldberg Runge-
Kutta method that was constructed to minimize the error of the fourth 
order solution. This makes the Dormand-Prince method more suitable 
when the higher order solution is used to continue the integration, a 
practice known as local integration [10].

Results and Discussions
Effects of different dimple number on the flight trajectory

Dimples affect the lift of a golf ball and therefore its trajectory. 
While the ball spin contributes one part of a golf ball’s lift, the other 
part is provided by the dimples, and both are vital for optimization of 
the lift. In the previous chapters, it was stated that dimples improve 
the aerodynamic characteristics and flight distance of the ball. Typical 
golf balls have between 300-500 dimples. The reason for the large 
number of dimples is to ensure that the boundary layer does not 
separate until the back part of the ball. Additionally, the high number 
of dimples is desirable due to the increased turbulence created which 
will consequently reduce drag on the ball and improve the distance the 
ball can travel (Figure 8).

We simulate the distances achieved by different dimple 
characteristics using the initial conditions.

{x(0),y(0),z(0)}={0,0,0}

( ) ( ) ( )} 2

3 0

0 , 0 , 0 0,1, , , 120x y z
LV V V

L v
τω τ ω

    = = =  
  

These same initial conditions are used in the subsequent sections. 
In Figures 9 and 10 it can be seen that the ball with the least number 
of dimples (250) has a flight path that is much like a flop i.e., a short 
trajectory used to get the ball over an obstacle and stops very quickly, 
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Figure 8: Drag coefficient for different Reynolds numbers (Seongman 
et al. (2013)).

Figure 9: Three dimension depiction of flight trajectories for varied 
dimple number.

Figure 10: Flight trajectory for varied dimple numbers as observed 
along the x-axis where the z axis has been re-labelled flight motion to 
indicate the loft of the flight trajectory on the X-Y plane.

it is characterized by a higher loft. The ball with 330 dimples has a 
relatively shorter distance than the one with 450 dimples, which indeed 
shows that the developed model is able to reproduce what happens in 
reality.

As we compare the ball trajectories with different number of 
dimples here, note that other factors like the depth and size of the 
dimple are held constant. We presume this is the reason for the marginal 
differences in horizontal distances and loft where max 

2 2X Y+  is the 
projection

Effect of dimple size c
d

 
 
 

 on the flight trajectory

The effect of dimple size is measured by the ratio of dimple diameter 
to the ball diameter 

c
d

 
 
 

. The results are presented in Figures 11 and 

12 for 0.06c
d
= , 0.06c

d
= , 0.1c

d
=  . The ratio 0.03c

d
=   reflects a ball 

with deep dimples and indicates that it is capable of achieving longer 

distances as compared to the other ratios 0.03c
d
= , and 0.03c

d
=   . 

Smaller dimples 0.03c
d
=  generate more back-spin on a golf ball 

than bigger dimples 0.06c
d
= , 0.1c

d
= which increases lift and cause 

the ball to rise higher but fails to generate sufficient turbulence thus 

the ball drops faster as shown in Figure 11. The ratio 0.1c
d
= , registers 

the longest distance (Figures 11 and 12). This is because if the size of 
the dimples is large its drag effect diminishes thus keeping the ball in 
the air for longer. If the number of dimples is increased then their size 
must get smaller and so the ball becomes almost smooth and will not 
perform very well in acquiring the required loft and carry. Therefore a 
proper trade-off between dimple number and size must be arrived at.

The results obtained here for bigger dimple size are quite 

comparable with those achieved by Naruo and Mizota [5] for 0.08c
d
= .

Effect of dimple depth 
k
d

 
 
   on the flight trajectory

We already know that dimples on the ball are responsible for 
the reduction in drag. The lift and drag forces on a golf ball are very 
sensitive to dimple depth since a depth of 0.001 inches can produce 
a radical change to the balls trajectory and consequently the overall 
distance it can fly. Ideally, a standard dimple measures approximately 
7/1000th of an inch deep. Adding or subtracting 1/1000 the results to a 
change in distance with plus or minus 5 yards. Sajima [11] considered 
the influence of the dimple depth using CFD. In his study the influence 
of dimples was systemized and investigated experimentally using wind 

tunnel and the ball rotation device. Consequently it was found that the 
influence of the dimple depth was significant and the shallower the 
dimple the more the lift coefficient and it gained a higher trajectory. 
However, shallowness exceeding a certain threshold, the lift coefficient 
declined greatly in the low speed hence achieving a short distance.

In this study we consider the measurement of dimple depth as the 
ratio of dimple depth to the ball diameter as a dimensionless coefficient 

and vary it as 0.006k
d
= , 0.006k

d
= , 0.012k

d
=  while holding other 

parameters constant. Our results in Figure 13 show that the highest 

trajectory is achieved by the ratio 0.003k
d
=  that represents a deeper 

dimple. And the distance it achieves is the shortest. However, to any 
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Figure 11: Three dimensional depictions of flight trajectories for varied 
dimple size.

Figure 13: A simulation of the effect of dimple depth on the flight 
trajectory.

Figure 12: Flight trajectories for varied dimple size as viewed along 
the x-axis where the z axis has been re-labelled flight motion to 
indicate the loft.

Figure 14: Depiction of the simulation results in Fig. 13 along the x-axis 
where the z axis has been re-labelled flight motion to indicate the loft.

golfer, distance is a very desirable aspect and anything working for 
greater distance is most acknowledged. As the depth increases the 
drag coefficient increases resulting to poor air resistance and therefore 
premature landing of the ball. On the other hand the ratios 0.003k

d
=

, 0.006k
d
=  achieve high trajectory and longer distance, with the 

moderately shallower dimples having the longest distance (Figure 14). 
This agrees with the study in Ting [12], Baek and Kim [7] and Mehta 
and Pallis [13].

Conclusions and Recommendations
In conclusion, the mathematical simulation of the dimple 

characteristics reveal that the aerodynamic behaviour and trajectory of the 
golf ball in flight is primarily dependent on the physical features of dimples.

By changing the sign of from positive to negative in the developed 
model enabled us to reproduce the trajectory of a ball hit with back-and 
top-spin respectively.

This study considered the motion of the golf ball from the instance 
of take off to the point when it lands. Future studies can include the roll 
that happens once the ball lands and what factors are responsible for 
a big or small roll. Moreover, future study can include putting as this 
important stage of scoring to a golfer.
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