Reach Us
+44-1522-440391

Basic science Department, Physics group, Imam Hossein University, Tehran, Iran

- *Corresponding Author:
- Kamjoo MJ

Basic science Department, Physics group

Imam Hossein University, Tehran, Iran

**Tel:**+98 21 7281 8142

**E-mail:**[email protected]

**Received Date**: October 07, 2016; **Accepted Date:** December 27, 2016; **Published Date**: January 10, 2017

**Citation: **Kamjoo MJ (2017) Simulation of Kerr Lens Modelocking Behavior in Sagittal Plane. J Laser Opt Photonics 4: 146. doi: 10.4172/2469-410X.1000146

**Copyright:** © 2017 Kamjoo MJ. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

**Visit for more related articles at** Journal of Lasers, Optics & Photonics

Femtosecond oscillator is first step to generate femtosecond laser pulse. Simulation of the laser beam behavior in the oscillator cavity, especially in the gain medium is essential to realize and optimize the oscillator output pulse characteristics. In this work, at first we simulate the laser beam propagation in a folded cavity with curved mirrors in symmetric and asymmetric designs using the ABCD ray tracing technique for a Gaussian beam shape to achieve influence of Kerr lens modelocking in sagittal plane. We use split-step method to obtain the beam intensity changes in the ti:sa rod and shooting method to calculate the beam spot size on the first cavity mirror. In following the influence of the gain medium position changes on the size and position of the beam waist and also on the misalignment sensitivity parameter for the sagittal plane is simulated. Furthermore the misalignment sensitivity parameter and the size and position of the beam waist are not identical for the beams in the sagittal plane, therefore to actualize an optimum design it is necessary to simulate the beam propagation in plane which is not usually considered in early design because of complication of the simulation.

Laser beam; Refractive index; Electric field; Kerr lens

(320.7110) Ultrafast nonlinear optics, (190.3270) Kerr effect

Femtosecond pulse laser is one of the most applied lasers and its oscillator is footstone in femtosecond pulse generation. Modelocking is a straightforward method to generate femtosecond pulses and Kerr lens effect is a widespread way to lock the oscillator cavity modes. The Kerr effect induced self-focusing [1,2] during an intense pulse passing through a gain medium along focal range is exploited for modelocking [3]. The optical Kerr effect causes a refractive index intensity dependence which induces lensing in the gain medium. The beam profile changes inside the oscillator cavity by the Kerr effect. Several investigations have been carried out about the Kerr lens modelocking [4-8]. The Kerr lensing causes the intense pulsed radiation inside the cavity gets narrower diameter and tighter focus than the CW radiation. Experimentally, when a suitable aperture is located inside the cavity, main part of the CW radiation will be eliminated by the aperture and therefore receives higher losses than the pulsed radiation. The combination of the Kerr lens-aperture acts as a fast saturable absorber and a fast passive gain modulation is obtained. At the beginning of the Kerr modelocking developments, intensity fluctuations in laser startup were not sufficient to induces strong and steady Kerr lens modelocking [9-10] so acousto-optic modulation, additive pulse modelocking, impulsive starting or other methods [11-21] was required before the Kerr lens effect modelocking. Self-starting Kerr lens modelocking was obtained by use of highly nonlinear Kerr effect gain medium. A selfstarting femtosecond oscillator exploiting Kerr lens modelocking was introduced by Sibbet et al. [22].

In this paper, we first simulate the laser beam propagation in a folded cavity with curved mirrors in symmetric and asymmetric designs using the ABCD ray tracing technique for a Gaussian beam shape to achieve influence of Kerr lens modelocking in sagittal plane. We use split-step method to obtain the beam intensity changes in the tisa rod as the gain medium and shooting method to calculate the beam spot size on the first cavity mirror.

In previous works the influence of the Kerr lensing during the laser beam propagation were simulated [3,23] but the astigmatism due to the cavity curved mirrors and the nonlinear Kerr medium were assumed negligible and not considered in the computation due to complication of simulation [24,25]. In this paper, for more precise beam propagation analysis inside the oscillator, the astigmatism is considered and the laser beam propagation in the sagittal plane is separately simulated. The changes in the beam waist size and its position also the oscillator misalignment sensitivity parameter in the sagittal plane are illustrated.

An oscillator with four-mirror cavity is considered in this simulation and shown in the **Figure 1**. The folded cavity setup changes the beam propagation behavior and displaces the focus points in the sagittal plane. Without the Kerr lens effect consideration, the astigmatism can be minimized by using the gain medium cut in its Brewster angle and rotating the cavity curved mirrors in a special angle [26]. Considering the Kerr lensing, the calculation of curved mirrors angle will not be valid for astigmatism compensation and the beam propagation in sagittal plane should not be neglected. The ABCD matrix is used to determine the beam profile in the oscillator [27].

**Ray tracing**

The concept of ABCD matrix for a beam propagation is shown in **Figure 2** Ray tracing of a beam through series of optical components is in the form of multiplication of 2*2 ABCD matrices.

When a beam propagates through an optical component, it enters in position r_{i} with slope of and exit from it at r_{0} with respectively. This can be written in form of an ABCD matrix.

(1)

For one round trip in oscillator we have total ABCD matrix as:

(2)

The required ABCD matrices for beam propagation simulation inside the oscillator are shown in **Table 1**. The resonator stability condition is satisfied by [28] that gives the allowed displacement range between the cavity curved mirrors (l_{23}=l_{2k}+l_{B}+l_{3k}). The oscillator misalignment sensitivity parameter in the stability region is determined by where larger C_{t} implies lower sensitivity of the oscillator to misalignment [29].

**Table 1:** Matrices of elements used in the simulation.

Fundamental transverse mode of a Gaussian beam in an oscillator is given by [28]:

(3)

Where R(z) and W(z) are the beam wave front radius of curvature and the beam spot radius at position z, respectively and λ_{L} is the beam wavelength.

The laser beam size is defined by . The beam parameter q(z) among propagation from z1 to z2 can be written as:

(4)

From the stability conditions in the cavity the beam wave front radius of curvature has to be equal to the mirror radius [30]. In the oscillator the input plane mirror M_{1} is located at z=0 with the radius R_{1}=∞, therefore q parameter after one roundtrip on this mirror is given by:

(5)

With consideration of the Kerr lens effect, the ABCD elements of one roundtrip matrix will depend on the laser beam radius (W(z)). Now shooting method is applied to calculate the beam size on the first mirror. In this method, first an arbitrary beam radius is chosen to start ray tracing for one roundtrip. If the chosen radius is correct, the equality equation (Eq. 7) must be fulfilled. Otherwise another radius must be chosen and repeat the calculation to obtain beam radius on the first mirror.

(6)

In the Eq.6 the index m stands for the number of the chosen arbitrary radius.

(7)

Where ε is the precision limit of the calculation. (Here it is assumed to be 10^{-5}).

For calculation of the intensity changes inside the Kerr lens medium, the crystal is splitted to thin layers and the beam propagation within each thin layer is calculated. The reason for this method is intensity dependency of the each elements of the overall medium matrix along the crystal. Intensity inside each thin layer is different than the others, but inside each layer is assumed to be constant. Each thin layer has its own intensity dependent ABCD matrix which is used as initial matrix to calculate the beam size in the next thin layer of the crystal. In the same way the beam size at the output face of the crystal is obtained. The combination matrix of all thin layer matrices simulates the medium matrix.

**Kerr effect on beam propagation**

When intensity of an input beam to a nonlinear medium is higher than a threshold, the medium response will be nonlinear and intensity dependent. In this regime the nonlinear refractive index is given by [2]:

(8)

Where n_{2} and γ_{2} are the nonlinear refractive index and nonlinear coefficient of the medium, respectively. The electric field amplitude, intensity of the beam and linear refractive index of the medium are shown by E_{0L}, I_{L} and n_{L}, respectively. ε_{0} and c_{0} are electric permittivity and light speed in the free space, respectively. Transverse distribution of the fundamental mode of a Gaussian beam can be approximated by Taylor expansion as:

(9)

Therefore the refractive index spatial distribution can be rewritten as [31]:

(10)

Where and γ is given by:

(11)

P stands for the laser beam power given by:

(12)

The Kerr lens effect in the Brewster plate is different in sagittal plane. Therefore it is essential that in the Eqs. 10-12, the beam waist and the intensity are replaced as, w→ws = w and , respectively. For the sagittal plane in the Brewster plate we obtain **(Table 2)**:

**Table 2:** Oscillator parameter used in simulation.

(13)

Where for a plane. The Kerr lens effect matrix elements for the sagittal plane in the crystal with length of LB are indicated in the **Table 1**.

When an enough powerful beam propagates inside a nonlinear medium showed in **Figure 1** the Kerr lensing rises in the medium. To show difference of the Kerr effect on the beam propagation in sagittal plane the distance between the crystal and mirror M_{2} is considered as a variable (L_{2k}). The implemented parameters for the ti:sa rod simulation are indicated in the **Table 2**.

In the achieved results, 1/C_{t} is the optical misalignment sensitivity parameter, d_{min} and z_{2min} are the beam waist size and its distance to the mirror M_{2}, respectively. The beam waist size is given as:

(14)

With considering the effect of the Kerr lens, the matrix elements will depend on the beam waist. Therefore shooting method is used to obtain the beam waist size on the mirror M_{1}. After finding the beam waist on the first mirror, W_{01}, the beam waist on the input face of the gain medium crystal is extracted. Then the split-step method is employed to get the total matrix of the crystal **(Figures 3-6)**.

Having the oscillator roundtrip matrix and the beam size on the first mirror, the beam size and curvature at any point inside the oscillator can be calculated.

By changing the crystal position to obtain the size and position of the beam waist in the cavity two considerations must be regarded. First, when the beam waist is located outside of the crystal, the transfer equations and transfer matrices have to be employed. Second, when the beam waist is located within the crystal, the minimum beam size and its location in split step method must be considered as the beam waist and its location in the crystal, respectively. As shown in the **Figure 3**, by increasing the distance of the crystal from the mirror M_{2}, as the beam waist remains outside of the crystal its position stays almost constant. When the beam waist arrives in the crystal the beam waist distance from M_{2} starts a fast decreasing until the beam waist leaves the crystal. This happens because of increasing the Kerr lens effect due to the increase of the beam intensity inside the crystal. By continuing the crystal movement from the M_{2} the beam waist position again remains almost constant. Kerr lensing effect is more intensive in the vicinity of L_{2k}=z_{2min}-L_{B} and L_{2k}=z_{2min} in (at Brewster plate) because of high intensity of the beam [11].

The optical misalignment sensitivity parameter (1/C_{t}) is shown in **Figure 4** for the sagittal ray. For minimizing the misalignment sensitivity parameters 1/C_{t} must approach zero.

The position and size of the beam waist is critical for the soft and hard aperture Kerr lens mode locking [5,19,32]. **Figures 5 and 6** show the beam size as function of L_{2k} inside the crystal and the beam waist size in the cavity as L_{2k}, respectively for the sagittal and the tangential rays. It is demonstrated that the beam sizes in the sagittal plane are not identical and also the beam positions in the same way. Hence for a precise simulation and cavity design, the beam size and its position in the sagittal plane has to be regarded. Optimum condition reveals as a compromise between the beam propagation in sagittal plane.

We first simulated the laser beam propagation in a folded cavity with curved mirrors in symmetric and asymmetric designs using the ABCD ray tracing technique for a Gaussian beam shape to achieve influence of Kerr lens modelocking in sagittal plane. We used splitstep method to obtain the beam intensity changes in the gain medium and shooting method to calculate the beam spot size on the first cavity mirror.

For more precise beam propagation analysis inside the oscillator, the astigmatism was considered and the laser beam propagation in the sagittal plane is separately simulated. The changes in the beam waist size and its position, also the oscillator misalignment sensitivity parameter in the sagittal plane were illustrated. The Kerr lensing effect in the gain medium was obviously observed when the beam waist is in the medium. The effect wore off when the beam waist was outside the medium. For minimizing sensitivity of the oscillator to misalignment, the parameter 1/C_{t} must approach zero. By choosing a suitable point in the 1/C_{t} curves, good position is achieved for the crystal to have low misalignment sensitivity.

All simulated parameters, in this work, have difference in sagittal plane. Hence for a precise simulation of each specified oscillator, its parameters have to be determined in the both sagittal plane. To design and simulate an optimized operating oscillator, a compromise between the parameters in the sagittal plane has to be achieved.

- Boyd R (2003) Nonlinear optics. Academic press.
- Shen Y (1976) Recent advances in nonlinear optics. Rev. Mod. Phys 48: 1.
- Hnilo AA, Kovalsky M, Agüero MB, Tredicce JR (2015) Characteristics of the extreme events observed in the Kerr-lens mode-locked Ti: sapphire laser. Phys Rev A 91: 013836.
- Sheik-Bahae M, Said AA, Hagan DJ, Soileau MJ, et al. (1991) Nonlinear refraction and optical limiting in thick media. Opt Eng 30: 1228-1235.
- Salin F, Piché M, Squier J (1991) Mode locking of Ti: Al2O3 lasers and self-focusing: a Gaussian approximation. Opt Lett 16: 1674-1676.
- Brabec T (1992) Kerr lens mode locking. Opt Lett 17: 1292-1294.
- Cerullo G, Silvestri SDe, Magni V (1994) Self-starting Kerr-lens mode locking of a Ti: sapphire laser. Opt Lett 19: 1040-1042.
- Diels JC, Rudolph W (2006) Ultrashort laser pulse phenomena. Academic press pp: 1-680.
- Chen S, Wang J (1991) Self-starting issues of passive self-focusing mode locking. Opt Lett 16: 1689-1691.
- Curley P, Ferguson A (1991) Actively mode-locked Ti: sapphire laser producing transform-limited pulses of 150-fs duration. Opt Lett 16: 1016-1018.
- Spence D, Evans JM, Sleat WE, Sibbett W (1991) Regeneratively initiated self-mode-locked Ti: sapphire laser. Opt Lett 16: 1762-1764.
- Sarukura N, Ishida Y, Nakano H (1991) Generation of 50-fsec pulses from a pulse-compressed, cw, passively mode-locked Ti: sapphire laser. Opt Lett 16: 153-155.
- French PJ, Williams, Taylor J (1989) Femtosecond pulse generation from a titanium-doped sapphire laser using nonlinear external cavity feedback. Opt Lett 14: 686-688.
- French P, Noske DU, Rizvi NH, Williams JAR, Taylor JR (1991) Characterization of a cw titanium-doped sapphire laser mode-locked with a linear external cavity. Opt Comm 83: 185-194.
- Pelouch W, Powers P, Tang C (1992) Ti: sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator. Opt Lett 17: 1070-1072.
- Liu YM, Sun KW, Prucnal PR, Lyon SA (1992) Simple method to start and maintain self-mode-locking of a Ti: sapphire laser. Opt Lett 17: 1219-1221.
- Emmerichs U, Bakker H, Kurz H (1994) Generation of high-repetition rate femtosecond pulses tunable in the mid-infrared. Opt Comm 111: 497-501.
- Radzewicz C, Pearson GW, Krasinski JS (1993) Use of ZnS as an additional highly nonlinear intracavity self-focusing element in a Ti: sapphire self-modelocked laser. Opt Comm 102: 464-468.
- Spence DE, Kean PN, Sibbett W (1991) 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser. Opt Lett 16: 42-44.
- Asaki, MT, Huang CP, Garvey D, Zhou J, Dennis Garvey, et al. (1993) Generation of 11-fs pulses from a self-mode-locked Ti: sapphire laser. Opt Lett 18: 977-979.
- Kafka JD, Watts ML, Pieterse JW (1992) Picosecond and femtosecond pulse generation in a regeneratively mode-locked Ti: sapphire laser. J of Quantum Electronics IEEE 28: 2151-2162.
- Liu KX, Flood CJ, Walker DR, van Driel HM (1992) Kerr lens mode locking of a diode-pumped Nd: YAG laser. Opt Lett 17: 1361-1363.
- Paschotta R, “Kerr Lens Mode Locking.
- Lee YW, Yi JH, Cha YH, Yoo BD (2005) Numerical analysis of soft-aperture Kerr-lens mode locking in Ti: sapphire laser cavities by using nonlinear ABCD Matrices. Journal of the Korean Physical Society. 46: 1131-1136.
- Rashidian Vaziri MR (2013) Z-scan theory for nonlocal nonlinear media with simultaneous nonlinear refraction and nonlinear absorption. Appl Opt 52: 4843-4848.
- Kogelnik HW (1972) Astigmatically compensated cavities for CW dye lasers. J of Quantum Electronics, IEEE 8: 373-379.
- Vaziri MR, Hajiesmaeilbaigi F, Maleki M (2013) New ducting model for analyzing the Gaussian beam propagation in nonlinear Kerr media and its application to spatial self-phase modulations. Journal of Optics 15: 035202.
- Saleh B, Teich M, Slusher RE (2008) Fundamentals of photonics. Wiley and Sons, New York.
- Milonni P, Eberly JH (1988) Laser Physics. Wiley and Sons. New York.
- Svelto O, Hanna DC (1976) Principles of lasers. (5thedn) Springer, Italy.
- Meier B, Penzkofer A (1989) Determination of nonlinear refractive indices by external self-focusing. Appl Phys B 49: 513-519.
- Siders CW (1994) Self?starting femtosecond pulse generation from a Ti: sapphire laser synchronously pumped by a pointing?stabilized mode?locked Nd: YAG laser. Rev of scientific instruments 65: 3140-3144.

Select your language of interest to view the total content in your interested language

- Capacitor
- Circuits
- Coal Consumption
- Contingency Analysis
- Current
- Directional Microphone
- Dynamic Stabilizer
- Electrical Engineering
- Electricity
- Electromagnetism
- Femtosecond Laser
- Fibre Optical Sensors
- Infrared
- Integrated Circuit
- Laser Diode
- Laser Spectrum
- Microphone Array
- Nano Photonics
- Nonlinear Optics
- Omnidirectional Microphone
- Optical Fiber
- Optical Switch
- Optics
- Oscillations
- Oscillator
- Photon
- Photonic Band Gap
- Photonic Crystal
- Photonic Crystal Fiber
- Photonics
- Power Analysis
- Power System Stabilizers
- Quantum Dot
- Quantum Well
- Quaternary Logics
- Refractive Index
- Robot Audition
- Semiconductor
- Semiconductor Laser
- Sensor
- Signal Crystal
- Single Mode
- Spectrum
- Two Photonabsorption
- Wave Theory

- Total views:
**1910** - [From(publication date):

March-2017 - Dec 07, 2019] - Breakdown by view type
- HTML page views :
**1751** - PDF downloads :
**159**

**Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals**

International Conferences 2019-20