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Introduction
Analyzing flow patterns in a converging-diverging nozzle has 

been one of interesting topic in computational fluid dynamics. There 
are numerous applications of this flow phenomena in aerospace and 
engineering sciences. Such process are difficult to handle analytically 
due to complex mathematical model associated to the flow and ensuing 
instabilities carried by flow parameters. Looking back to the history 
Jaffery [1] and Hamel [2], in their studies considered the converging 
diverging channel steady two dimensional Newtonian fluid flow. They 
observed quiet interesting results by treating Navier-Stokes equations 
with similarity transforms. Further developments were presented 
in Schlichtinh [3] and Batchelor [4] based on the boundary layer 
approximations. Makinde [5] examined the incompressible Newtonian 
fluid flow by incorporation of linearly diverging symmetrical channel. 
Recently, Zarqa et al. [6] performed approximate analytical analysis 
using Adomian decomposition method for a channel with variable 
diverging ratio. It is evident by several studies that the mechanism of 
such flows is characterized due the fact that shocks instabilities are 
produced within the flow domain. Mehta et al. [7] formulated finite 
element method for solid rocket motor. He worked on the transient 
flow with axisymmetric and anisotropic model on throat nozzle. 
Later on Nikhi et al. [8] presented the computational analysis for flow 
in da Laval nozzles. Apart from the flow analysis, there is significant 
contribution by researchers on the shape optimization analysis for 
nozzle flows [9].

Although many fluids in real world applications carry Newtonian 
behavior, there is a number of fluids that exhibit non- Newtonian 
behavior. The applications ranges from industrial materials like clay 
coatings, doilling muds, suspensions, oils, greases, polymer melts 
to biological materials. Because of the great diversity in the physical 
structure of non-Newtonian fluids there are many constitutive models 
that represent different types of non-Newtonian fluids. Among 
these, the second grade fluids exhibits a linear relation between the 
stress and the Rivilin-Ericksen tensor, its square and the second 
Rivilin- Ericksen tensor [10]. The resulting mathematical model is 
more complex than that for Newtonian fluid. To respond to this 
concern we opt for computational techniques to investigate the flow 

parameters. The theoretical foundations of finite element method for 
non-Newtonian fluid flow is presented by Adelia [11]. They presented 
finite element method for elliptic type system of partial differential 
equations that represents steady state incompressible second grade 
fluid flow. Numerical testing of the proposed method has not reported 
yet. It is due to computational complexity of the mathematical model. 
A large number of solution techniques have been developed to solve 
such non-linear problems, these include approximate analytical 
techniques such as perturbation analysis, Homotopy analysis, adomian 
decomposition and numerical techniques such as finite difference 
method, finite volume method, finite element methods, operator 
splitting methods and spectral methods. The finite difference method 
is strongly influenced by meshing quality problem while finite volume 
method requires additional treatment for analyzing different flow 
regimes. The flexibility of meshing and segregated formulation of 
pressure and velocity in terms of the basic functions are the most 
desirable features of finite element method that makes it suitable and 
superior for investigating non-Newtonian fluid flow in converging-
diverging channel. Another concern is the convergence and stability 
of numerical methods. Finite element method is not just suitable in 
terms of efficiency but also there is a sound stability analysis before 
implementation. This work addresses the application of finite element 
method for second grade fluid flow in a converging-diverging channel. 
We present two different results for two different set of primitive 
variables in order to see changes in flow regimes.

The remaining article is organized as follows. Section 2 presents 
basic equations for the flow problem and corresponding weak 
formulation. The numerical methodology and simulation set up 
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Abstract
Very little work have been reported on the computational methods for non-Newtonian fluid turbulent flows. This is 

due to nonlinear system of elliptic partial differential equations that makes the solution very difficult. Another concern 
is the meshing of flow domain that accounts for complications in solving most problems. In this work we present 
standard Galerkin finite element method for the steady incompressible non Newtonian fluid flow in a converging-
diverging nozzle. The flow is fully three-dimensional with turbulent characteristics. The main aim is to study the 
velocity and shear stress profiles. Shock profiles are noted for specific pressure boundary conditions. Moreover the 
plotted results shows variations of velocity components, pressure and turbulence energy dissipation. It is observed 
that for non-Newtonian fluid flow the mass flow rate and pressure loss effects are significant in diverging part of 
nozzle.
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Working according to standard Galerkin FEM approach, we 
obtain:

0, 1: ,hjdivV d j m
→

Ω

Ψ Ω = =∫ 			                   (11)

[ ]1 1 1 2 2 0j h j jA A A V dµ α α ϕ ρ ϕ ϕ
→

Ω Ω

 + + ⋅∇ + ⋅∇ Ω = 
 ∫ ∫  	               (12)

The tangential and normal components ut and un are taken as j tϕ
→

⋅
and j nϕ

→

⋅  respectively using conventional notations for tangential and 
normal vectors to element. Finally the above discretized set of equations 
are written as a system of nonlinear algebraic equations as follows:

LU=0,					                   (13)

SU + N(U) – LTp=F.				                (14)

Here U stands for the vector of unknowns v1j, v2j and v3j, p denotes 
the vector of unknowns pj, N represents the discretized nonlinear 
convective terms, LU is the discretization of continuity equation and 
–LTp is the discretization of pressure gradient. All the contributions 
from boundary integrals are transferred to right hand side. In order to 
handle nonlinear terms we have chosen standard Newton linearization 
method. So in linearized form the system is written as:

SU + N (Uk)U – LTp=F,			    	               (15)

LU=0.					                    (16)

where Uk refers to the solution from previous iteration.

Numerical Implementation
The implementation for the simulation of model presented in 

section II are carried within the framework of open source Autodesk. 
In order to achieve accurate and stable computations of gradients a 
second order upwinding scheme is used for momentum equations.

Simulation setup

The formulation presented in section II is implemented in a three 
dimensional converging-diverging nozzle. Figure 1 shows the simulation 
domain. The nozzle is aligned along x-axis and three dimensional flow 
is considered. A finite velocity magnitude is provided at the inlet and 
velocity constant is kept unknown at outlet with a fixed pressure value. 
No-slip boundary are used for the symmetry walls of channel.

are included in section 3 along with results and discussions. Finally 
concluding remarks are summarized in section 4.

Basic Equations
The mathematical model represents the three dimensional flow of 

incompressible second grade fluid. It is to be noted here that the fluid 
material is incompressible, i.e. density is kept constant. The body forces 
and thermal effects are ignored.

Hence the dynamics are represented as:

div V=0 					                      (1)

ρV =div T, 					                    (2)

where ρ is density, V stands for three dimensional velocity vector 
and T is the stress tensor defines as:

T=–pI+µA1+α2A2+α1
2

1A 				                   (3)

With A1 and A2 be the first and second Rivilin-Ericksen tensors, µ is 
the coefficient of viscosity and α1 and α2 are the normal stress moduli. 
Thus the equations that controls the transport of momentum with the 
fluid flow reads as:

( ) ( )2 2 2 2 2 2
1 2 1 1 1

10
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    (4)

The coupled equations 1 and 4 constitute a nonlinear elliptic system 
of PDEs. Moreover, boundary conditions are associated in order to 
have a well-posed problem. A rigorous weak formulation is given next. 
The flow domain Ω is three- dimensional and ∂Ω represents boundary 
of the domain. In this case it comprises of an inlet, outlet and curved 
surface of nozzle. The domain is discretized into non-overlapping 
cells. In order to derive weak formulation for the system (1-3) together 
with appropriate boundary condition, multiply the equations by a test 
function and then integrate over a finite element cell. The test function 
is taken in a Sobolove space with the property that it vanishes on the 
prescribed boundary. The solution is sought in terms of trial functions 
which satisfies the prescribed boundary conditions. For the continuity 
equation we get:

. 0q divVd
Ω

Ω =∫ 				                     (5)

Defining 1 2 3( , , )Tu u u u
→

= with u1, u2 and u3 be the separate test 
functions for momentum equations, it follows:
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Consider the second integral on right hand side:
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Where  ΓΩ denotes the boundary of Ω, un and ut are the normal 
and tangential components of u

→

 respectively. Next is to define the basic 
functions ( )i x

→

Ψ  and ( )i xφ
→

 for pressure and velocity components 
respectively. The approximation for V and p will be:
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with

Figure 1: Schematic diagram of converging-diverging nozzle aligned along 
x-axis.
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Simulation Results
Figures 1-8 give the overview of different flow parameters. These 

are velocity components in each direction and shear stresses. The 
power law non-Newtonian model is used with viscosity coefficient 
equals to 0.0033. The mass flow rate of 5 g/s is applied at the inlet. The 
flow is turbulent with k-epsilon model and Kappa taken as 0.4.

Conclusion
The steady turbulent second grade fluid flow has been observed 

by computational method. The flow regime has been bounded by a 
converging-diverging nozzle. It is observed that flow is fully three-
dimensional near converging throat area inlet. But this effect reduces 
near inlet and outlet boundaries. Moreover shear stresses are maximum 

Figure 2: X-component of velocity vector.

Figure 3: Y-component of velocity vector.

Figure 4: Z-component of velocity vector.

Figure 5: XY Plot for Static Pressure.
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in converging throat area. There is a significant decrease in pressure in 
diverging regime while turbulence kinetic energy dissipation effects are 
maximum for this region. Hence it can inferred that there is a relation 
between pressure loss and mass flow rate.

The future goals are to extend the study for multi physics problems 
by considering the thermal and magnetic effects. Moreover the 
nozzle walls can be designed as wavy or irregular to optimize the flow 
parameters.
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