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Abstract

The interplay of genetic, immunological and environmental factors is the driving force towards autoimmunity and
each of these branches of biological science is necessary to identify the cause and progress of autoimmune
disorders. Differential transcript abundance as an effect of environmental or epigenetic modifications may directly
regulate emergence while a sustained copy number increase may drive disease progression. A precise evaluation of
these transcript level differences could be the key to understand the mechanism of development and progression of
autoimmune diseases however it is imperative to quantitate the subtle changes at the highest resolution. This review
summarizes the studies that have explored the importance of analyzing differential transcriptome at single cell
resolution, further to emphasize the importance of this approach for enhanced understanding and to identify more
sensitive and specific biomarkers for autoimmune diseases.
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Description
The human body has invested enough to create a well-armed army

for defense against intruders. Two well-organized lines of defense have
been built up to an extent that if one fails to completely eliminate the
invaders the other insinuates briskly. The interplay of these innate and
adaptive immune responses proactively helps to combat diseases [1].
With the introduction of autoimmunity as an immune dysfunction that
counters self, results in target tissue destruction and involves multi-
organ ramification; an extensive research was initiated to understand
the mechanism of immune dysfunction for identification of new
therapies to treat and even prevent autoimmune diseases. More than
seventy autoimmune disorders including rheumatoid arthritis,
multiple sclerosis, systemic lupus erythematosus have been registered
so far that are known to be a consequence of excessive immune
responses. Despite their heterogeneity, autoimmune diseases share
epidemiological, etiopathogenic, and clinical features [2,3]. The past
two decades of research has yielded rich insights into the pathogenesis
and molecular mechanisms responsible for progression of many
autoimmune diseases [4-8].

The predictive onset of immunologic changes or the outcome of
autoimmune disease is increasingly being employed by measuring
serum auto-antibodies. An expanding spectrum of auto-antibodies has
been reported for different autoimmune diseases. Besides rheumatoid
factors (RF) [9,10] and anti-citrullinated peptide (anti-CCP [10]) as
predictors of rheumatoid arthritis (RA), we proposed the diagnostic
capacity of anti-Mannose binding lectin (anti-MBL) auto-antibodies
for RA [11]. Elevated titres of anti-nuclear antibodies (ANA) are seen
in patients with systemic autoimmune rheumatic diseases [12]; anti-
MDA5 antibodies in myositis [13,14] and auto-antibodies to 3-
hydroxy-3- methylglutaryl-coenzyme-A reductase (HMGCR) in
patients with immune mediated necrotizing myopathies [15] are well
recognized. The thrombotic events in anti-phospholipid syndrome are

mediated by anti-phospholipid antibodies such as anti-cardiolipin
antibodies (Acl [16]) and/or anti-β2 glycoprotein I (β2GPI [16,17])
and/or lupus anticoagulant (LAC [16]). Considering the fact that
autoantibody signatures can often be detected prior to the onset of the
disease, they have been constantly used as predictive biomarkers.

Genomics of Autoimmunity
Many studies suggest that a blend of environmental and genetic

factors is responsible; both are necessary, but are insufficient alone for
full articulation of an autoimmune disease. An altered combination of
genetic sequences has been implicated to provide the foundation for a
potential autoimmune disorder that can be triggered with an external
stimulus following a stochastic event. Studies involving monozygotic
twins have facilitated the understanding and have further confirmed
the role of genetic factors in establishment of autoimmune disorders.
Multiple gene loci have been conferred responsible for a disease
outcome moreover shared pathogenesis by a single gene has been
shown to be responsible for various autoimmune diseases [18].

Major histocompatibility complex (MHC) presents a predominant
region in human genome with association of variants at this locus with
predisposition to numerous autoimmune disorders [19]. Human
MHC, known as human leukocyte antigen (HLA, class I and class II)
are highly polymorphic and provide genetic restriction for T
lymphocyte responses. An aberrant class II presentation of self or
foreign peptides to autoreactive T lymphocytes has been suggested to
play a critical role in disease specific associations [19]. Allelic
heterogeneity in HLA-DRB, HLA-DR4 genes plays role in
susceptibility to multiple sclerosis [20-26]; while HLA-DQ is the major
disease-predisposing locus in Type 1 diabetes with DRB1*04-
DQA1*0301-DQB1*0302 and DRB1* 03-DQA1*0501- DQB1*0201
haplotypes predisposing European populations to the disease [27-32].
The shared epitopes coded by HLA-DRB1 alleles is a significant genetic
risk factor for rheumatoid arthritis [33]. Also shared HLA haplotypes
have been implicated in different diseases highlighting their central
role in mediating host inflammatory responses [19]. Others and we
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have shown that a myriad of non-HLA genes like PTPN22 [34], TNF
[34-36], CTLA-4 [34], MBL2 [37], PADI [34] may be prognostic for
autoimmunity. Many genome-wide association studies (GWAS) have
highlighted genes and pathways pertinent with autoimmune diseases
[18,38] concluding that genomic studies have profound clinical
applications. Hence genetic approaches to identify target or druggable
genomes have been well explored since past decade [39,40].

Transcriptomics in Autoimmunity: Advantages at
Single Cell Resolution

Determining the genetic makeup though can be helpful in
predicting disease predisposition and progression however occurrence
of geographic and occupational clustering of autoimmune patients
[41-43], external factors including exposure to tobacco smoke [44,45],
radiation [46,47], chemical compounds [48], epigenetic modifications
[49] and infectious agents [50] play significant role in development of
autoimmune disease, providing substantial evidences of the
environmental involvement in these diseases. The environmental
factors, dynamic changes in cellular make up of tissues and infectious
challenges substantially influence gene transcription thereby affecting
transcript abundance.

Cell to cell variability owing to their stochastic and deterministic
nature can only be tapped by following their transcriptional states.
Alterations in RNA abundance will reflect a prompt and sustained
response against self-antigens as well as processes involving recurring
and remitting patterns of the disease. We recently showed that CD8+ T
cells have profound differences in their tumor activity in melanoma
patients depending on the peptide vaccines with either
immunodominant HLA-A*0201-restricted native peptide of the
melanoma antigen Melan-AMART-126-35 (EAAGIGILTV) or single
amino acid substituted analog peptide (A27L; ELAGIGILTV) [51].
This discrepancy arrives due to differential expression of transcriptome
for an appropriate effector function. Thus transcriptional activity being
oscillatory, adapting swiftly to the needs of environmental and
physiological cues provides a powerful tool for logical exploitation to
identify biomarkers describing the physiological status of a disease as
well as substantiation of therapeutic interventions.

Major technological breakthroughs to study spatio-temporal
differences in transcript abundance have provided an apprehensive
view of disease predisposition and progression [52]. DNA microarrays
have been extensively used for transcriptional profiling of many
autoimmune diseases [35,53-69]. Quantitative PCR [70,71],
Nanostring [72,73] and more recently next generation sequencing
(NGS) technologies [74,75] have helped us to build gene expression
patterns and networks for disease associations. Though the technology
has advanced drastically from PCR to microarray to NGS analysis, the
asymptote of genetic analyses will soon reach if we continue to analyze
population of cells.

We surmise in differential transcriptome by observing subtle
changes between conditions by analyzing population of cells and
accepting implicitly that the constituent cells behave analogously. This
averaging over population results in loss of critical information by
responding cells over non-responders. Time has come that we
understand and treat each cell individually. While sequencing single
neuron cDNA libraries from electrophysiologically identified warm
sensitive neurons [76], could characterize active adult neurons and
detect rarely expressed receptors that were undetectable in population
pools. Immune system players like dendritic cells (DC) are not a single

cell types but a system of cells that arise from both the myeloid and
lymphoid hematopoietic lineages [77]. Various DC subtypes are
thought to differ in their capacity to either stimulate or inhibit the
immune response [77]. Thus it is extremely important to understand
how every cell of a subset responds to external or physiological
stimulus, and then look for patterns in the behavior that would tell us
how these cells make decisions [78,79] observed extensive bimodality
in the transcriptional response of mouse bone-marrow-derived
dendritic cells (BMDCs) to lipopolysaccharide by measuring RNA
abundance and splicing patterns of individual BMDCs that remained
previously undetected. We recently showed that single-cell gene
expression profiling allows identification of qualitative differences in
CD8+ T-cell responses elicited by different gene-based vaccines in
melanoma patients. To this extent we as well observed that within the
population of CD8+ T cells with even identical TCR clonotypes,
individuals developed differential effector function depending on their
gene expression pattern [51]. Moreover, analyzing CD8+ T cells at the
single cell level revealed cellular heterogeneity and polyfunctionality
within tumor- and virus-specific CD8+ T cell sub-populations which
was previously undetected using a population of cells, demonstrating
the power and promise of single-cell transcriptomics in uncovering
functional diversity between cells and in deciphering cell states.
Ramskold et al., [66] identified distinct gene expression patterns as
well as candidate biomarkers for melanoma circulating tumor cells
using single cell enabled mRNA sequencing. Even isogenic cells in
culture show strong variability. Continuously changing
microenvironment for individual cells in cell culture conditions has
been demonstrated to propagate changes in cell-cell-matrix dialogue
such that each cell assimilates subtle differences [80-83]. Recently
Herderschee et al. [84] reviewed the role of single cell technologies in
providing an unprecedented detail of immune responses. Moreover in
their effort in analyzing in vivo transcriptional states of single cells of
complex tissues to characterize cell-type compositions, Jaitin et al. [85]
demonstrated the power of single-cell RNA-seq for comprehensive
cellular decomposition of complex tissues.

Thus to our belief, synchronization of cells by isolating with
identical characteristics followed by an experimental protocol and
interpreting data is nothing but a concocted extrapolation. Hence
given the inherent stochasticity and heterogeneity of multicellular
tissues, single cell transcriptomics is essential to understand the
biological functions.

For autoimmune disorders, being inherited but driven by
environmental cues, it makes it imperative to view their real time
spatio-temporal dynamics at a single cell resolution. The major
challenge that needs to be addressed in the studies involving
autoimmune disorders is finding predictive biomarkers of the disease.
For the purpose, the transcript signatures of individual cells will not
only hasten an unbiased discovery of overlooked key molecules
mediating robust effects but will also enable identification of
circulating rare cell population that may be stimulating neighbor cells
for the visible disease outcome. Blood has always been a preferred
tissue for gene expression analysis studies to identify potential
biomarkers and clues for disease pathogenesis. However blood only
provides a snap shot of the intricate immune networks operating in the
body. In autoimmune disorders like juvenile rheumatoid arthritis
where the cells migrate from the blood and accumulate at the site of
inflammation [86,87], sampling the site of inflammation like synovial
fluid, tissue cells (biopsy) will provide better and detailed view of
specific immune reaction. Again these sites are reservoirs of diverse
cell types with lineage abundances shadowing the few deterministic
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cells. Understanding the functional relevance of these cells can only be
possible following an analysis at single cell level enhancing the
sensitivity and specificity of the identified biomarker. Covey et al. [88]
clearly highlighted the significance of single cell analysis by network
profiling in biological characterization of autoimmune diseases like
systemic lupus erythematosus and rheumatoid arthritis benefiting
clinical medicine and drug development. Using multiparameter single-
cell measurements Candia et al. [89] identified phenotypic differences
between healthy and diseased patients, as well as between Behçet's
disease and sarcoidosis, the diseases that share many common features
and are difficult to diagnose.

Understanding the progression of an autoimmune disorder by
identifying classifiers that distinguish different clinical forms or
activity phases of the disease is as intriguing as finding diagnostic
markers and poses another challenge in the field of research. Finding
stringent predictors at distinct stages can be challenging if the analysis
masks important information pertaining to population level analysis. It
is also important to decipher the processes influencing initial tolerance
breakdown and to distinguish them from those responsible for
perpetuating autoimmune pathology. Analyzing and averaging over a
population of cells that includes many distinct intermediate
differentiation states will compromise over absolute results and will
alter differentiation kinetics pertinent with the disease progression.
This highlights the importance and necessitates the use of
transcriptomics in understanding autoimmunity at the single cell
resolution.

Further the prognostic competence of the proposed biomarker
needs to be validated before compliance and RNAi mediated in vitro
protocols are often exploited for the purpose. Snijder et al., [90] while
analyzing population context of RNAi screens have confirmed that the
cell population averaging can be misleading in interpreting even a
perturbation phenotype and the methods that have the depth to
measure activities at single-cell resolution can only overcome this
issue, further acknowledging the potential of single cell analysis.

Patients with autoimmune disorders like rheumatoid arthritis,
psoriasis, and inflammatory bowel disease are prescribed with disease
modifying drugs or anti-TNF therapies. Very often the patients
undergo remission, however occasionally they show a progressive
relapse [91,92]. It will be interesting to follow patterns of gene
expression and regulated gene networks during the course of the
disease as well as in patients proceeding towards clinical remission.

Moreover understanding the discrete genetic modifications and the
consequent signaling mechanisms leading to an occasional relapse as
well as determining the efficiency with which the patient responds
towards the drug will be of paramount importance. It is thus
fundamental to understand the gene expression signatures that will
allow us to discriminate between clinical phases of relapse and
remission between patients eventually substantiating the efficacy of
therapeutic interventions. A well-targeted intervention requires a more
complete map of the cellular mechanisms and genes underpinning
self-tolerance, thus single cell enabled NGS will be beneficial in this
regard to not only discern overlooked transcripts but to also identify
distinguished cells.

Moreover clustering together of analyzed single cells according to
qualitative and quantitative differences in their transcript expression
patterns manipulating the cellular signaling mechanisms will help us
answer the key question of why only a subset of cells are responders
and not the entire cell population.

Challenges of Single Cell Transcriptomics
Though in relatively naïve stage, single cell transcriptomics will

revolutionize our understanding of the functional identity of each cell
of a subset (Figure 1). Methods employed to pick up single cells are
debatable and are a matter of personal and or practical preference
however we believe that the methods should be rapid and at near-
physiological conditions. Handpicking of neuronal cells has been
demonstrated by Morris et al., [93], we used flowcytometry based
sorting of each melanoma antigen specific CD8+ T cell directly in 96
well plates [51,94,95], laser microdissection or micromanipulation [96]
and microfluidics for isolation of single cells has been extensively
exploited [97-102]. Lengthier protocols to isolate single cells may lead
to alterations of gene expression patterns as well as cell death.

Figure 1: Protocol for single cell transcriptomics.

Nonetheless the first question that puzzles is ‘how many cells’? Even
using as few as ten cells, single cell sequencing studies have
demonstrated the potential to distinguish complex heterogeneity [103].
Since most methods employ linear amplification of transcripts for a
statistical readout of relative abundance, a better number will definitely
provide conclusive results. However, for analyzing rare or low-
abundance cells, tag-based sequencing of 5’ or 3’ e nds provides a
scaled up assay for better estimates of transcript counts [80,103-105].
Still the numbers can be enormous. To address the issue, efforts have
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been put together by researchers to build cost effective as well as high-
throughput methodologies [103-112]. Multiplexing individual cells
marked with specific barcodes for NGS work wonders to overcome the
cost barriers (Soumillon et al.). NGS though not cheap will no longer
remain the most expensive part of the protocol.

Following a well-planned experiment the next step is to generate
meaningful data to build disease associated gene networks for effective
perturbations necessitate another brainstorming engagement. To begin
with, the use of RNA spike-ins [113], incorporating a unique identifier
into every molecule prior to amplification [105,114]; direct sequencing
of single molecules of RNA from single cells [26,83] can overcome the
concept of technical noise in these single cell experiments thereby
enabling hand picking of relevant transcripts. Moreover, factors such as
heterogeneity of starting populations owing to the cell source, sample
collection and processing methods as well as analysis platforms may
well contribute to the differences observed between transcriptomic
studies. However if each cell is analyzed individually in its particular
time and space, there are better chances of reproducible representation
of cell population.

Conclusion
Knowing the unique transcript signature of each cell of a subset in

its particular time and space will allow us to disclose predisposition
potential, predict the vivacity with which the cell can respond to a
stimulus and reconstruct cell lineage trees with very high precision.
Considering the ease of data collection and interpretation, it is
mandatory and increasingly important to collect meaningful
information and single cell enabled analysis can only be effective in
this regard. It is the method of present and future. However, extending
single-cell analyses beyond the transcriptome is indeed an area of
interest. Since epigenetics modifications have been implicated in
various autoimmune diseases [49] methods pertaining to single cell
epigenetics would be of increasing priority to understand
transcriptional regulation and build regulatory networks for better
perturbation strategies. Fessenden [115] in her article has very
evidently summarized that examining epigenetic modifications in
single cells will allow researchers to establish the differences among the
mosaic of cells as well as the functional consequences of those
differences for development and disease states. Besides these protein-
gene interactions, it is necessary to identify the cell specific protein-
protein interactions to define the discrete protein interactome
responsible for pathogenesis and progression of autoimmune disorders
[116-119].
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