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Introduction
Current State of Metagenomics 

The heterogeneity of microbial communities has historically been 
ignored in metagenomic studies. Most of our current understanding 
about the dynamics of natural microbial communities has been derived 
from studies carried out on bulk population: Generally millions of cells 
are collected and analyzed in an ecological survey [1,2]. In the past, the 
outcome of such analyses answered the questions in the form, “What 
is there?” to address the “dark matter” [3-5] of microbial species found 
in a particular environment and sample their genetic composition. 
The data obtained from such population studies is processed using 
metagenomic tools which are not well-suited to answer questions 
about the individual components of a species. These questions entail 
topics such as the organization of the genes, evolutionary history 
of the organisms in the community and their metabolic exchange-
repertoire [3,6]. Recently, the interest has shifted towards answering 
questions of the form “What does this particular part of the community 
do?” Consequently, these topics address the immense complexity 
of network-based interactions in a microbial community and the 
diversity within a species present in that environment [7-9]. The advent 
of single cell genomics (SCG) has has improved our understanding 
and augmented our ability to answer these questions by making it 
accessible to compare the differences between individual cells. The 
practical advantages of single cell techniques were demonstrated with 
the recent applications of SCG in identifying copy-number variations 
in the human brain neurons and their consequences for neural cells in 
pathogenic states [10,11]. 

The success of SCG approaches resulted from major breakthroughs 
in two different areas: It was in part due to the advances in next-
generation sequencing and another part was due to new extraction 
and isolation techniques of biological samples [12-14]. SCG provides 
access to sequences of all DNA in the analyzed cell, including 
chromosome material, plasmids, and pathogens. The genomic material 
of individual uncultured cells is amplified by techniques such as 
multiple displacement amplification (MDA) and whole-genome 

sequencing is carried out to recover viral genomes for processing 
[6,12,15,16]. Further analysis of the data obtained from the sequencing 
of the cellular components has allowed for accurate and uncultured 
viral-host pairing. In parallel to sequencing, new flow cytometry and 
microfluidic manipulation techniques have allowed for single-cell 
isolation from most environments [14,17]. Despite these advances in 
SCG approaches, many challenges remain to be addressed before SCG 
becomes a standard technique for researchers.

The exponential growth in the amount of biological data being 
generated and curated from single-cell studies will require drastically 
new measures for data management, analysis and accessibility [6]. 
High-throughput platforms analyzing whole genome amplification 
products of single-cell isolates generate a tremendous amount of 
data. The interpretation of this data in an efficient and fast manner to 
distinguish true genomic variants from the background noise presents 
a major challenge for bioinformatics [18,19]. To investigate subtle 
biological heterogeneity and diversity between collected samples, 
precise methods with high sensitivity are required due to limiting 
amount of genetic material [20,21]. In addition, to enable single-cell 
genome sequencing of the uncultured microbial hosts or samples, 
a number of technical issues critical to the pipeline must be first 
addressed. These include problems such as the removal of background 
noise, amplification bias and errors, and the compatibility with 
currently available genome sequencing pipelines [2,20,22,23]. Although 
next-generation sequencing devices provide us with high-resolution 
genomic data-maps from single cells, identification of unique elements 
to viral predation and reprogramming such as chromosomal variants 
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Abstract
Viruses are the most abundant biological entities and infectious agents present in almost every ecosystem on 

the planet. Yet our understanding of how viral-mediated gene transfer and metabolic reprogramming influence the 
evolutionary history of their hosts and microbial communities remains poor at best. At the same time, identifying 
and modeling the community dynamics of viruses from the environment through conventional plaque assays is 
complicated because less than one percent of microbial hosts have been cultivated in vitro. Computational methods 
in metagenomics and phage isolation techniques have limitations in identifying the uncultured hosts of most viruses. 
Moreover, the model system-based measurements derived from such techniques rarely reflect the network properties 
of natural microbial communities. To address these problems, development of high-throughput, massively parallel 
sequencing approaches that do not rely on cultivation to identify specific virus-host relations such as single-cell 
genomic sequencing (SCGS) has become critical. SCGS has advanced our capacity to understand the genomic and 
transcriptomic diversity that occurs during viral-host interactions in an individual uncultured host. Here, we review the 
major technological and biological challenges and the breakthroughs achieved, describe the remaining challenges, 
and provide a glimpse into the recent advancements.
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and alternative transcript processing in viral hosts is still in its infancy 
[17,24-26] (Figure 1).

Viral Host Responses
Host response-screening of a single-cell

Sequencing single cells was not possible until very recently because 
most bacteria contain a miniscule amount of genetic material that could 
not be properly extracted and processed [1,2,6]. The first breakthrough 
was the development of shotgun sequencing of DNA extracted from 
environmental samples which broadened the accessibility to sampling 
environments [6]. The second major development was the introduction 
of Multiple Displacement Amplification (MDA) which allowed for 
high-resolution amplification of the extracted genome, followed by 
eventual reconstruction of the target genome in the process through 
bioinformatics algorithms [6,12-14,27]. The development of single 
cell amplification came in the form of phi-29 (Φ29) DNA-pol based 
replication of small circular DNA-templates [6,28]. The polymerase-
based rolling-circle amplification allowed for hyper-branching of the 
DNA-strands which further allowed for thousands of copies to be 
generated. The early efforts had an increasing amount of amplification 
bias where random regions of the genome became under-represented 
in the resulting genome [6]. However, with gradually improving 
protocols, supplementation from computational corrections and cross-
verification with the curated databases, better results with reduced bias 
are being obtained in recent studies [5,28,29].

The assembly of the target genome from the amplified genetic 
material still remains a pertinent challenge [4,9]. In most of the 
metagenomic studies performed on the single-cell genome, it has 
been incredibly difficult to assemble the genome of any individual 
species except for the most abundant ones [3,29,30]. Any accurately 
constructed assemblies obtained from the samples have been generated 
as a consensus genome from multiple fragments [31,32]. The genome-
recovery process produces varying levels of success for different species 
which might result from a higher GC content or restrictive access to 
the genome because of the presence of DNA-bound proteins [5,16,25]. 

To better understand virus-host interactions in uncultured viruses and 
find biologically relevant genomic variants, accurate de novo sequence 
reconstruction of viral-genome is critical [12,13]. With improved 
genome-recovery and reconstruction techniques in near future, we 
will also gain the ability to precisely assign viral hosts ignoring the 
background noise and predict virus-related genomic elements with 
greater accuracy and efficiency [5,7,11,23,33].

Host-invasion record-viral-host interactions in the 
transcriptome

Pathogenicity involves multiple pathways and molecular mediators 
causing long-term changes in the genomics of the host, some of these 
changes have recently been observed via single-cell studies. Once the 
genetic material from a sample has been extracted and amplified, 
one approach for quantifying transcriptional complexity of gene 
expression in single-cells is through RNA-sequencing resulting in 
whole-transcriptome analysis [8,34]. The transcriptome extracted from 
a single-cell reflects the internal composition of the cell, the changes 
in gene expression in response to stimuli and more importantly a 
record of pathogenic invasion [8,24,25,35]. Viral markers can thus be 
identified from the transcripts made accessible from the host-genome 
amplification [8]. Single-cell transcriptomics has revealed complex 
patterns of heterogeneity within sub-population of cells by classification 
using computational techniques such as k-means clustering which have 
already show multimodal expression in some studies [7,36]. Currently, 
new viral diagnostic patterns are being investigated by uncovering 
similar multimodal expression peaks [34,36]. Recent studies have 
shown new and promising applications of transcriptome analysis in the 
context of viral predation [8,17,34]. Gene-element integration during 
the lysogenic conversion, for instance, in eukaryotic hosts can be 
identified from transcriptome instability patterns in differential-exon 
expression of the transcripts [8,9].

The transcriptome is only a small fraction of total genomic 
sequence therefore RNA-seq can be used to collect early insights 
into the relational phylogenics, early versus late gene transcription or 

Figure 1: Branching of metagenomics and single-cell genomics. In the metagenomics, a sample is 
obtained from the environment, then lysed to extract total DNA and sequenced. In single cell sequencing 
however, a single cell is isolated from the environment and then amplified before its genomic contents 
are sequenced. 
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to analyze viral-reconstruction of host-phenotypic response. For 
instance, Sen et al. [46] used SPAdes for clustering and construction 
of basal phenotype maps to understand how the Varicella-zoster virus 
alters tonsil T-cells. Furthermore, SPAdes is compatible with several of 
the commercially available sequencing platforms such as Ion Torrent 
and Illumina making it easy to integrate into existing pipelines [37,38, 
47]. In broader application, single-cell cytometry in combination with 
bioinformatics tools like SPAdes can be used to provide new hypotheses 
on the reprogramming of host cells by intracellular parasites such as 
viruses [2,4]. In addition, the data can also provide insight into the 
local alteration in the genome for the differentiated cells as well as how 
those alterations differ from the changes happening in the microbial 
community to support pathogenesis [2,4]. The molecular mediators 
involved in such processes will be part of a complex interaction network 
and researchers have started to curate those networks as interactome 
databases [10,11].

Karr et al. [29] proposed a comprehensive computational model to 
understand how molecular interactions result in complex phenotypic 
responses for a cell. The whole-cell computational model is based on 
fundamental principles of signal transduction and curated components 
that integrate numerous biological pathways and cellular processes. 
Moreover, the simulation contains programmable modules which 
can be used to gain granular control over cell physiology in a manner 
that is not possible in a physical cell. The compartmentalization of the 
whole-cell model is being used to gain new insights on protein-DNA 
associations and biological discovery of new cellular mechanisms. 

Through the whole cell simulation, Karr et al. hypothesized 
the emergence of a cell-cycle control mechanism as a result of the 
synchronous activity of the independent simulation modules that 
regulate various cellular behaviors. Similarly, the metabolome, 
the transcriptome, the genome and the proteome can lead to the 
emergence of interactions necessary for viral integration into the host 
as a “super” module. In near future, this would allow researchers to 
explore the capabilities of the modules in new directions to facilitate 
the understanding of a pathogenic episode. 

Interactions at large (Viral-host Interactome)
The application of single cell genomics to viruses has only recently 

started to gain prominence but considerable progress is being made 
towards one of the broad goals of SCG: Compilation of vast protein-
interaction networks between viruses and their hosts in the microbial 
community [34,41]. The rationale behind this goal is to elucidate the 

alignment [17,34,37]. There are two approaches to convert the RNA-
seq data into transcript sequences: The first one involves the use of 
previously established model organisms and model-genomes and the 
second one is via de novo assembly [5]. The first approach has become 
standard for model organisms however it does not perform well for 
studying non-model organisms and this is especially true for viruses 
where model systems for viral-host interactions are limited [5,28]. One 
solution to this problem has recently emerged in the form of Trinity 
platform [27]. De novo assembly of RNA-seq data enables researchers to 
study transcriptomes without the need for complete genome coverage 
from the amplified fragments. Trinity platform also allows for de novo 
transcriptome assembly from RNA-seq data for non-model organisms 
[27,30]. The Trinity platform represents a unique opportunity for 
bioinformatics tools in single-cell genomics as a full-stack toolset 
for transcriptome analysis facilitating complementary information 
to metagenomic studies [4,15]. Assembly and reconstruction of the 
whole genome is still a very expensive endeavor however advances 
in nanofluidic and lab-on-chip approaches in near future will make 
single-cell experiments more affordable and accurate [13,26,30].

Modeling host responses to viral invasion

The bacterial genome stores a memory of the recent pathogenic 
invasions [21]. The identification of viral markers can be critical in 
reconstructing that response along with the key host-viral interactions 
taking place during the process. Single cell techniques can provide 
access to that level of detailed information from an infected cell and 
the data obtained can in turn be used to create simulations or models 
for the host response. Advanced simulation methods such as whole 
cell simulation [29] are very exhaustive in terms of computational 
resources and still only produce results in a limited context. However, 
next-generation sequencing technologies focusing on single-cell 
techniques along with the support from bioinformatics algorithms have 
greatly reduced the cost and increased the effectiveness of single-cell 
sequencing, priming it to tackle the problems of pathogenic-response 
reconstruction [3, 6, 16]. Algorithmic developments have also extended 
the previous uniform-genome coverage assumptions to be inclusive for 
non-uniform coverage from assembly and also to account for chimeric 
DNA segments accumulated during the MDA reaction [3,33].

A versatile algorithmic tool known as SPAdes, uses k-mers for 
creating the de-Bruijn graph upon which it performs graph-oriented 
operations based on factors such as sequence size and graph-shape [4]. 
With an increased coverage, SPAdes has been utilized in recent studies 

Figure 2: Concerns and limitations of metagenomics and single-cell genomics. In the center are the 
benefits of using both the techniques augmentative to each other for future studies.
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broad-scale interactions that happen to the communities that are 
sampled in metagenomic studies and discover the function of each 
component from the sample-community.

A recent study exemplifies this process in the case of applying 
genome-wide screens to influenza virus to scan for the host factors that 
are required in viral replication [37]. The study identified 1,000 host 
factors in the virus-host interactome that are less likely to mutate under 
selective pressure from drugs and can therefore be used in a hit-to-lead 
progression for drug-development [39]. Similar studies using single 
cell techniques have identified biologically-relevant gene variants 
from interactome analysis and highlighted the clinical relevance of 
using host-targeting drugs [39,40,42]. The host-targeting drugs offer 
a reduced risk approach because it takes longer for the host to develop 
resistance. Unveiling the interactome and extending it to clinically 
relevant viruses as mentioned is being done in two approaches: A direct 
approach involving genetic screens and an indirect approach involving 
single-cell genomics [37,39,40]. The direct approach suffers from 
the limitation of using well-established model systems for virus-host 
systems [42]. However, the indirect approach bypasses this limitation 
and involves extraction of genetic material from individual cells 
followed by hybridization with the viral genome from the extracted 
genome. This allows us to select the positively hybridized viruses and 

sequence them for assignment to the correct host-pair without ever 
culturing the virus-host system [28].

This methodology was adopted by Matrinez-Garcia et al. [5,28] in 
the general sense to identify viruses from the ‘microbial dark matter’ 
which comprises of the uncultured environmental viruses. Similar 
indirect approaches have been used in the past to study transmission 
and mutation of human immunodeficiency virus type I (HIV-1). 
Salazar-Gonzales et al. [43] used single-cell amplification to obtain 
intact HIV-1 envelope units from viron-RNA and demonstrate 
evidence for early mutation and diversification of the viral-envelope. In 
this case, conventional PCR-based techniques using Taq-polymerase 
were generating more noise from events such as recombination and 
nucleotide misincorporation [6]. To reduce the noise, single cell 
techniques such as amplification methods were applied to generate 
a neighbor-joining tree which was used to find an estimate for early 
mutation. The estimate was derived from the most recent common 
ancestor (MRCA) between the mutated viral strains which was obtained 
from the neighbor tree and ranged between 10-31 days [43]. The 
versatility of single-cell techniques augmenting metagenomic studies 
has become even more apparent in the case of virus-host systems and 
as the interactome expands, new indirect techniques will allow for 
complex networks to be generated to provide clinical insights [42,44].

Figure 3: Construction of a viral-host interactome. An environmental sample is processed through 
various stages until various host-pathogen factors are identified. These factors are integrated to create a 
full viral-host interaction profile.
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Most of the single-cell genomic techniques have been applied to 
identify patterns in the genetic code; however in near future it will 
become critical to also analyze the modifiers of the genetic code [15]. In 
eukaryotic systems, gaining a deep understanding of the modifiers such 
as histones and the code related to them, the so-called histone code will 
pave the way for complex system-level insights into the biology of viral-
host interactions (Figure 3).

Viral-Host Interactions in Eukaryotic Cells
The dynamics of viral-host interactions in eukaryotic host-

cells are collectively more complex and rich. Eukaryotic single-cell 
amplifications are more complex because they involve a greater 
number of regulatory elements and a sharp contrast in the genome 
involving the presence of histones and nucleosomes [45-47]. Histone-
tail modifications have well-defined roles in gene and chromatin 
regulation however their long-term impact on cellular physiology 
during a pathogenic episode remains largely unclear [48]. Alongside 
the genetic code, in eukaryotic cells, the recently discovered histone-
code is also known to play a major role in gene regulation.

The current single-cell sequencing studies have shown promise 
in distinguishing complex patterns of variance in the sequenced cells 
however interpreting the epigenomic code of a cell remains in its 
infancy [23,49]. The complexity of epigenetic regulations is immense 
and defining an underlying code to predict their function in parallel 
to transcriptome analysis will remain of great interest in near future 
[15]. Interestingly, protocols for detecting methylation status in single-
cell analysis are becoming more sensitive and assisting in exploring 
the ‘methylome’ landscapes of individual cells during pathological 
processes such as tumorigenesis [45,48].

Detection of viral-host modifications to the epigenetic code are 
only beginning to be understood however single-cell techniques 
can replace traditional methodologies to supplement metagenomic 
and clinical studies. Furthermore, in near future, existent single-cell 
techniques would be applied to search for common overexpression 
changes such as hypermethylation [46,49]. For instance, a recent 
study by showed that hypermethylation of Somatostatin receptor-1 
in the CpG islands assist in the progression of the Epstein Barr virus 
to gastric cancer [49,50]. Such changes in hypermethylation states 
are predictive of known pathogenic conditions. In the future, the 
hypermethylation modifications would become visible through the 
reconstruction process and also highlight the changes common to a 
viral community thriving inside a patient [49]. As single-cell techniques 
evolve to provide epigenetic information, a database of epigenetic code 
interactome parallel to the protein databases will emerge providing the 
complete picture of the connections between the transcript and the 
genetic modifications in the nucleosome [23,45].

Final Remarks
In this review, we discussed the use of single-cell genomic techniques 

applied to investigate viral-host relationships and the incredible 
challenges that stand in path of achieving that goal. We reviewed the 
advancements in next-generation sequencing and the bioinformatics 
algorithms that have allowed for reduced noise and better coverage. 
Next, we discussed the role of transcriptome constructed from the 
RNA-seq data which allows for quick and early diagnostics. Lastly, 
we described the application of single-cell techniques to creating the 
interactome what the future holds for deciphering the histone code. 
Presently, there are several limitations to the practical applications 
of single-cell techniques in regards to extraction, amplification, and 

data-analysis [51-55]. Nanofluidic manipulation and Fluorescence-
activated cell sorting (FACS) approaches required for the isolation of 
individual cells and the subsequent extraction of the genomic contents 
have had varying amounts of success with different environmental 
samples. Several groups [13,26,30] are working on improving those 
results to give reasonable success with most samples obtained. On the 
other hand, the multiple displacement reaction (MDA) required for 
amplification of the extracted genome suffers from bias wherein certain 
regions are repeated more often than others. Finally, the amount of 
data generated from the whole-cell sequencing of even a single-cell 
is enormous. One pertinent challenge in the area is to reduce the 
background noise and focus on the novel expression targets and new 
bioinformatics algorithms will improve detection hit-rates.

Single-cell genomic techniques have reduced the need for 
established and cultured model systems to study microbial 
communities. The interactions among viruses and their hosts have 
far-reaching consequences on the host genetics, and biochemistry. 
Single-cell genomics is also being used in drug-discovery pipelines 
along with advanced metagenomics and bioinformatics enabling fast 
identification of relevant sequences and “genome islands” [4,39]. The 
discovery of new drug targets through viral-host interactions follows 
a hit-to-lead progression. Next-generation sequencing technologies 
have made understanding genomics much more integrative: The high-
throughput sequencing provides massive amounts of data which is 
analyzed by bioinformatics algorithms to identify potential hits [56-
60]. The hits get processed to generate biologically relevant leads which 
are then understood in the larger context of -omics data such as the 
interactome for viral-host interactions discussed here. In addition, 
advances in metagenomics are creating new tools to act as supplements 
for standard techniques and provide additional information about the 
complexity emerging from a glimpse of the full landscape. 
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