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Abstract
The magnetohydrodynamic flow of micropolar fluid through porous medium inside the rectangular microchannel 

is investigated. The flow is subjected to a uniform magnetic field. This phenomenon is modulated mathematically by a 
system of linear differential equations which describe the continuity, momentum and angular momentum equations of 
the considered fluid. The system of differential equations has been solved analytically. We have obtained the velocity 
and microrotation vectors in terms of a Fourier series. The volumetric flow rate is calculated and the effect of various 
parameters like medium permeability, magnetic field, the Knudsen number, the microrotation parameter and coupling 
parameter are discussed and illustrated graphically through a set of figures.

Keywords: Micropolar fluid; Porous medium; Slip-flow; Microrota-
tion vector; Rectangular microchannel

Introduction
In nature and various engineering fields, there are a large number 

of fluids, containing small particles, such as blood, polymeric 
suspensions, colloids, liquid crystals, and lubricants. Their bulk fluid 
properties are different from those of Newtonian fluids, due to fluid-
particle interaction and particle rotation on the bulk flow. Eringen 
[1] constructed the micropolar fluid model and gave the analytical 
solution for Poiseuille flow in a pipe. The micropolar fluid model has 
been extensively used. Hogan [2] adopted the model to investigate the 
blood flow in an idealized stenosis. The flow through a tube of uniform 
cross section is attractive for researchers since different types of cross 
sections will involve different types of solutions. In a very popular paper, 
Sparrow [3] has considered the entrance flow of a viscous fluid through 
a tube of arbitrary cross section. This problem was analyzed numerically 
in the case of a rectangular dust using finite element method by Comini 
and Chien [4,5] studied the unsteady flow of a viscous fluid through a 
rectangular channel. This problem was extended by Gupta Prem [6] 
to study the nature of flow through a rectangular tube filled with the 
saturated porous bed. Various types of unsteady flows of a second-
grade fluid though a duct of the uniform crosses section were discussed 
by Emin Erdogan [7]. But very few papers are available in the case of 
micropolar fluid flow through the rectangular channel under constant 
and periodic pressure gradients. The steady flow of an incompressible 
conducting micropolar fluid through a rectangular channel with a 
uniform cross-section in the presence of a transverse magnetic field 
with suction and injection at the side walls was considered by Ramana 
Murthy [8]. The slip-flow of a Newtonian fluid past a linearly stretching 
sheet was considered Andersson [9]. The partial slip was controlled by 
a dimensionless slip factor, which varies between zero (total adhesion) 
and infinity (full slip). Misra [10] studied blood flow through a 
stenosed arterial segment by taking into account the slip velocity at the 
wall of the artery. Consideration of the Non-Newtonian character of 
blood was made, where a constitutive relation of blood was described 
by Hershel-Bulkley equation. The effect of slip at the arterial wall in 
the presence of mild, moderate, and severe stenosis growth at the 
lumen of an artery was investigated. Lok [11] considered the problem 
of steady two-dimensional boundary layer flow of a micropolar fluid 
near an oblique stagnation point on a fixed surface with Navier’s slip 
condition. It was found that the flow characteristics depend strongly 
on the micropolar and slip parameters. Villevo Adanhounme [12] 

investigated the Navier stokes flow equations of micropolar fluids by 
peristaltic pumping through the cylindrical tube, taking into account 
the slip boundary conditions at the wall and using the suitable change 
of variables. Shangjun Ye [13] Studied laminar flow of micropolar 
fluid in rectangular microchannels. The governing equations solved 
numerically to obtained the velocity profiles and microrotation 
gyrations by a procedure based on the Chebyshev collocation method. 
Vimala [14] studied the laminar two-dimensional flow of a micropolar 
fluid through a porous channel with variable permeability. The electro-
osmotic flow of a micropolar bio-fluid in a microchannel under the 
action of an alternating electric field was described by Misra [15]. In 
this paper, we investigated the slip flow in a porous medium of Eyring-
Powell micropolar fluid in a rectangular microchannel under the effect 
of a magnetic field. The rest of this paper is organized as follows: in 
the next section we present the details of the models we analyzed, and 
then we use Fourier series for solving the equations. In the results and 
discussions, we summarize our results.

Formulation of the Problem
The geometry of the problem is shown in Figure 1. The center of the 

coordinate system is located at the bottom left corner of the channel. The 
dimensions of the channel in y and z directions are a and b respectively 
and x-coordinate is measured along the axis of the channel.

The equations of steady flow in porous medium for an 
incompressible conducting Eyring-Powell micropolar fluid in the 
presence of a magnetic field as described by Eringen [16] are given by: 

0=⋅∇ q                                                                       	               (1) 
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And 

( ) 2 ( ) ( )j q N k N k q Nρ γ⋅∇ = − + ∇ ∧ − ∇ ∧ ∇ ∧ +

				            ( ) ( )Nα β γ+ + ∇ ∇ ⋅ (3)

Where ρ, q , p, N  and J  are the density, the velocity vector, 
pressure, the microrotation vector and the magnetic field, k is the cross 
viscosity, µ is the dynamic viscosity of biofluid, kp is the permeability of 
porous medium. J  is the current density and j is the micro-gyration 
parameter, and τij is the stress tensor for an Eyring-Powell fluid which 
describes the shear behavior of a number of viscoelastic fluids including 
polymers, biofluids etc, as discussed earlier, this takes the following 
form 
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Where β* and c are the Eyring-Powell material characteristics, 
we can simplify τij by taking first approximations of the hyperbolic 
functions as 
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The material coefficients α, β, γ related by the inequalities 

2µ + k ≥ 0, k ≥ 0, 3α + β + γ ≥ 0, γ ≥ |β |     

The velocity field, microrotation vector, and magnetic field are 
defined as

0( , ) , (0, , ),

( ), ( , ), ( , )

q u y z i N A B H H k

J E q H A A y z B B y zσ

= = = 
= + ∧ = = 

	                (6)

Where A and B are the component of microrotation vector, E  is the 
electrical field and σ is the electrical conductivity. We can neglect the 
electrical field H  compare with the magnetic field H  . We assume that 
the electrical field H  and the induced magnetic field due to the motion 
of the fluid do not disturb the applied magnetic field. This assumption 
is reasonable if the magnetic Reynolds number is very small. Hence, H  
can be taken as a constant applied magnetic field kH 0  . substitute from 
equation (5) and (6) in equations (2) and (3) we obtain, 
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In the present study, slip-flow in rectangular microchannel is 
investigated under the boundary conditions for slip-flow regime, the 
hydrodynamic boundary conditions are: 
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s
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Where us is the slip velocity at the walls Eckert and Goniak [17,18], 
and Fv is the tangential momentum accommodation coefficient, λ 
is the molecular mean free path and 

w

u
n

∂ 
 ∂ 

 is the velocity gradients 

normal to the wall. To facilitate solutions, we now introduce a 
set of transformations which render the conservation equations 
dimensionless, defining:
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Where C0  is coupling parameter, s and δ are couple stress 
parameters, Re is the Reynolds number, km is the Knudsen number  
and *

pk  is the permeability of porous medium, implementing these 
expressions and proceeding with the analysis, the governing equations 
(7)-(9) now reduce to the following partial differential equations in 
terms of the dependent variable, dimensionless form after dropping 
dash mark are given by:
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The corresponding transformed boundary conditions are now 
given by:
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Figure 1: The schematic of the micro-channel.
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Eliminating A, B and F from (14) and (15), we get the equation of 
G as:

usGs 22 )2( ∇=−∇                                                                                             (17)

Eliminating A, B and G from (14) and (15), we get the equation of 
F as:

0)2( 2 =−∇ Fsδ                                                                                                   (18)

Use equation (17) to eliminate G from equation (13) we get, 
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To solve equation (19) under slip boundary conditions (16), we 
employ u (y, z) in the form of

0
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un is obtained by substituting (20) in (19) and using Fourier series 
for RHS of (19), we get,
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Solution of equation (21) can be taken as: 
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For solving equation (18), we let:
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Substitute (24) in (18) we obtain: 
2

2
2

( ) (2 ) 0n
n n

d F y s t F
dy

δ− + = 	  		              (25)

Hence solution of Fn is written as: 
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Substituting (20) in (13), we have:
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To match with the expressions for F in (24) and G in (27), the 
solution for A and B can be taken in the form:
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Substituting (20), (26), (27) and (28) in (14) and (15) we get:
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Using boundary conditions (16) on u i.e., u = us at y = 0 and y = 1, 
we get:
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Using the condition on A that A=0 at y = 0 and y = 1, we get:
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Similarly, boundary conditions on B that B=0 at y = 0   and y = 1, 
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The equations from (31) to (36) are solved for find the constants c1, 
c2, c3, c4, c5, and c6, hence the solutions for u, A and B can be found.

Volumetric flow rate 

The volumetric flow rate Q in non-dimensional form is given by: 

∫ ∫
= =

=
1

0 0

),(
y

h

z

dzdyzyuQ                 

1 1 2 2
1 2 3 4

1 1 2 20

1 2 3 4

2 1 1 2 2

1{

2( 1) sin( )

nn

n

n
n

c c c cQ e e e e
t

L c c c c ht
ha t

α α α α

α α α α

α α α α

∞
− −

=

−
= + − +

 − − + − + −  
 

∑

	             (37)

Where 

∆
∆

= 1
1c , 

∆
∆

= 2
2c , 

∆
∆

= 4
4c , 

∆
∆

= 4
4c , 

∆
∆

= 6
6c  and 

∆
∆

= 6
6c            (38)

And

112211

112211

2211

)()(

)()(

00
00

4433

4433

882211

882211

4321

4321

ββαααα

ββαααα

αααα

δδ
ψψψψ

δδ
ψψψψ

ξξψψψψ
ξξψψψψ

ξξξξ
ξξξξ

e
s
t

e
s
t

eeee
s
t

s
t

eeeeee

eeee

nn

nn

−−−

−−−

−−

−−

−−

−
−

=∆ ,

11221

11221

221

)()(0

)()(0

00
00

443

443

8822175

8822175

4325

4325

1

ββααα

ββααα

ααα

δδ
ψψψ

δδ
ψψψ

ξξψψψξξ
ξξψψψξξ

ξξξξ
ξξξξ

e
s
t

e
s
t

eee
s
t

s
t

eeeee

eee

nn

nn

−−

−−

−

−−

−−

−
−

=∆ ,

11221

11221

221

)()(0

)()(0

00
00

443

443

8822751

8822751

4351

4351

2

ββααα

ββααα

ααα

δδ
ψψψ

δδ
ψψψ

ξξψψξξψ
ξξψψξξψ

ξξξξ
ξξξξ

e
s
t

e
s
t

eee
s
t

s
t

eeeee

eee

nn

nn

−−−

−−−

−−

−

−

−
−

=∆ ,

11211

11211

211

)()(0

)()(0

00
00

433

433

8827511

8827511

4521

4521

3

ββααα

ββααα

ααα

δδ
ψψψ

δδ
ψψψ

ξξψξξψψ
ξξψξξψψ

ξξξξ
ξξξξ

e
s
t

e
s
t

eee
s
t

s
t

eeeee

eee

nn

nn

−−

−−

−

−−

−−

−
−

=∆ ,

11211

11211

211

)()(0

)()(0

00
00

433

433

8875211

8875211

5321

5321

4

ββααα

ββααα

ααα

δδ
ψψψ

δδ
ψψψ

ξξξξψψψ
ξξξξψψψ

ξξξξ
ξξξξ

e
s
t

e
s
t

eee
s
t

s
t

eeeee

eee

nn

nn

−−−

−−−

−−

−

−

−
−

=∆ ,

12211

12211

2211

)(0

)(0

0
0

4433

4433

8752211

8752211

54321

54321

5

βαααα

βαααα

αααα

δ
ψψψψ

δ
ψψψψ

ξξξψψψψ
ξξξψψψψ

ξξξξξ
ξξξξξ

e
s
t

eeee
s
t
eeeee

eeee

n

n

−−

−−

=∆

−−

−−

−−

,

0)(

0)(

0
0

12211

12211

2211

4433

4433

7582211

7582211

54321

54321

6

βαααα

βαααα

αααα

δ
ψψψψ

δ
ψψψψ

ξξξψψψψ
ξξξψψψψ

ξξξξξ
ξξξξξ

−−−

−−−

−−

−−

−−

−
−

=∆

e
s
t

eeee
s
t
eeeee

eeee

n

n

                                        

Where 

7
2
161 ξαξψ += , 7

2
262 ξαξψ += , 

3
1

3 1 9 1
0sc

αψ α ξ α= + − ,   
3
2

3 2 9 2
0sc

αψ α ξ α= + − ,

mkυβαξ 11 1+= , mkυβαξ 12 1−= , mkυβαξ 23 1+= ,  

mkυβαξ 24 1−= ,

5
2

2( 1)n

n

L
ha t

ξ −
= , 6

0

nt
sc

ξ −
= , 

3 2

7 *
0 0 0

n n n
n

p

t t M tt
sc sc sc k

ξ = − + + + , 
δ

βξ
s

1
8 = ,

2 2

9 *
0 0 0

1n

p

t M
sc sc sc k

ξ = + +  .				                 (39)

Results and Discussion
The slip flow of micropolar fluid through a porous medium in 

a rectangular microchannel affected by a uniform magnetic field 
is investigated. The differential equations which governing this 



Page 5 of 14

Citation: Agoor BM (2018) Slip Flow in Porous Medium of Micropolar Fluid in a Rectangular Microchannel under the Effect of a Magnetic Field. J Appl 
Mech Eng 7: 298. doi:10.4172/2168-9873.1000298

Volume 7 • Issue 1 • 1000298
J Appl Mech Eng
ISSN:2168-9873 JAME, an open access journal 

phenomenon and subjected to the appropriate boundary conditions 
have been solved analytically by using Fourier series. The effect of a 
physical parameter is discussed numerically and illustrated graphically 
through a set of Figures 2-22. 

The variation of velocity c for different values of the parameters 
is shown in Figures 2-7. The contour lines of u are shown in Figures 
2b and 3b, and flow pattern of u are shown in Figures 2a and 3a for 
different values of magnetic parameter M. Figure 2c illustrate the 
variation of the velocity u with the magnetic parameter M, we observe 

Figure 2a: Velocity profile of u in 3D at M=10.

Figure 2b: Contours of u at  M=10.

Figure 3b: Contours of u at M=20.    
At: *

00.2, 0.3, 0.5, 3, 0.1, 0.4, 0.1, 0.25p mL s h k c kυδ β= = = = = = = =     

Figure 2c: Relation between u and M at y=0.5, z=0.6
At: *

00.2, 0.3, 0.5, 3, 0.1, 0.4, 0.1, 0.25p mL s h k c kυδ β= = = = = = = =

 
Figure 4a: Relation between u and *

pk at y=0.5, z= 0.6, s=0.3. 
At: 00.2, 0.5, 0.1, 0.4, 0.1, 0.25mL h c kυδ β= = = = = =

 
Figure 3a: Velocity profile of u in 3D at M=20.

 

Figure 4b: Velocity profile of u and *
pk =0.5.
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that the velocity u decreases with increase in the magnetic parameter M. 
It is observed from Figure 4a that the velocity u increases for increasing 
the porous parameter ∗

pk . Figures 4b and 4c illustrates the distribution 
of the velocity u, with y direction for different values of ∗

pk , it can 
have observed that the velocity u is increasing. Figure 5a illustrates the 
velocity profile decrease for increasing the couple stress parameter s. 
The variation of velocity u, with y direction for different values of s is 
shown in Figures 5b and 5c. From Figure 6a, it can be observed that the 
velocity u is increasing as the coupling parameter c0 increasing. Figures 
6b and 6c indicate that with an increase in the value of s, the velocity 
u increase with y direction. The velocity u at various Kundsen number 
km are shown in Figures 7a, 7b and 7c, we observe that the velocity u 
increases when Kundsen number km increases.

Figure 4c: Velocity profile of u and *
pk =6. 

At: 00.2, 0.3, 0.5, 10, 0.1, 0.4, 0.1, 0.25, 0.6mL s h M c k zυδ β= = = = = = = = =

Figure 5a: Relation between  and s y = 0.5, z = 0.6, *
pk = 3. 

At: *
00.2, 0.3, 0.5, 3, 0.1, 0.4, 0.1, 0.25p mL s h k c kυδ β= = = = = = = =

 
Figure 5b: Velocity profile of u at s=0.5.

Figure 5c: Velocity profile of u at s=0.5.
At: *

00.2, 3, 0.5, 10, 0.1, 0.4, 0.1, 0.25, 0.6p mL k h M c k zυδ β= = = = = = = = =

Figure 6a: Relation between u and c0 at  y=0.5, z=0.6, km=0.25           
At: *0.2, 0.5, 20, 0.4, 0.1, 3, 0.3pL h M k sυδ β= = = = = = =     

 

 
Figure 6b: Velocity profile of u at c0=0.3.                           

Figure 6c: Velocity profile of u at  c0=1 .
At: *0.2, 3, 0.5, 20, 0.3, 0.4, 0.1, 0.25, 0.6p mL k h M s k zυδ β= = = = = = = = =
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Figure 7a: Relation between u and km at y= 0.5, z= 0.6, c0= 0.4 
At: *0.2, 0.5, 20, 0.4, 0.1, 3, 0.3pL h M k sυδ β= = = = = = =   

 
Figure 7b: Velocity profile of u  at km=0.1.
At: *0.2, 0.5, 20, 0.4, 0.1, 3, 0.3pL h M k sυδ β= = = = = = =

 

Figure 7c: Velocity profile of u  at  km=1.                       
At: *

00.2, 3, 0.5, 20, 0.3, 0.4, 0.1, 0.3, 0.6pL k h M s c zυδ β= = = = = = = = =   

Figure 8a: Microrotation component A (of y - direction) in 3D at M=10

Figure 8b: Contours of A at  M=10.     

Figure 8c: Microrotation A at M=10.

Figures 8-12 illustrate the variation of the microrotation y 
component c for different values of M, ∗

pk , c0, s and km.  Figure 8a 

Figure  8d: Microrotation A at M=20
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Figure 8e: Relation between A and M at y=0.6 
At: *

00.2, 3, 0.5, 0.25, 0.3, 0.4, 0.1, 0.1, 0.6p mL k h k s c zυδ β= = = = = = = = =   

Figure 9a: Microrotation A at 1.0* =pk .

Figure 9b: Microrotation A at  100* =pk
At:  00.2, 10, 0.5, 0.25, 0.3, 0.4, 0.1, 0.1, 0.6mL M h k s c zυδ β= = = = = = = = =   

Figure 9c: Relation between A and *
pk  at y=0.1.     

Figure 9d:  Relation between A and *
pk  at  y=0.8

At: 00.2, 10, 0.5, 0.3, 0.5, 0.4, 10, 0.8, 0.6mL M h s c k zυδ β= = = = = = = = =   

Figure 10a: Microrotation A at c0=0.2.                               

Figure 10b: Microrotation A at c0=1.                               

Figure 10c: Relation between A and c0 at y=0.6.        
At: *0.2, 10, 0.5, 0.25, 0.3, 0.4, 0.1, 0.5, 0.6m pL M h k s k zυδ β= = = = = = = = =     
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Figure 11a: Microrotation A at S=2.

Figure 11b:  Microrotation A at S=20.

Figure 11c: Relation between A and S at y=0.6.
At: *

00.2, 10, 0.5, 0.25, 0.5, 0.4, 0.1, 0.5, 0.6m pL M h k c k zυδ β= = = = = = = = =

 
0.0 0.2 0.4 0.6 0.8 1.0

� 0.259748

� 0.259748

� 0.259748

� 0.259748

� 0.259748

� 0.259748

� 0.259748

�m

�

Figure 12a: Relation between A and km at y=0.3.             

 Figure 12b: Relation between A and km at y=0.7.
At: *

00.2, 10, 0.5, 0.3, 0.5, 0.4, 0.1, 0.5, 0.6pL M h s c k zυδ β= = = = = = = = =   

Figure 13a: Micro-rotation component B(of Z- direction) in 3D at M=0.       

Figure 13b: Contours of B at M=0.     

Figure 13c: Microrotation  component B (of z- direction) in 3D at  M=10.  
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Figure 13d: Contours of  B at  M=10.       
At: *

00.2, 3, 0.5, 0.25, 0.3, 0.4, 0.1, 0.1p mL k h k s cυδ β= = = = = = = =   

Figure 14a: Microrotation B at M=10.

Figure 14b: Microrotation B at M=30.       

Figure 14c: Relation between B and M at y=0.6. 
At: *

00.2, 3, 0.5, 0.25, 0.3, 0.4, 0.1, 0.1, 0.5p mL k h k s c zυδ β= = = = = = = = =   

Figure 15a: Microrotation B at 8* =pk . 

Figure 15b: Microrotation B at 2.0* =pk
At: 00.2, 10, 0.5, 0.25, 0.3, 0.4, 0.1, 0.1, 0.5mL M h k s c zυδ β= = = = = = = = =   

Figure 15c: Relation between B and 
*
pk  at y=0.8.

Figure 15d: Relation between B and *
pk  at y=0.3.       
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Figure 16a: Microrotation B at c0=1.                              

Figure 16b: Microrotation B at c0=0.1.

Figure 16c: Relation between B and c0 at y=0.6. 

Figure 17a:  Microrotation B at S=3.                             

Figure 17b: Microrotation B at S=10.                               

Figure 17c: Relation between B and s at y=0.6. 
At: *

00.2, 10, 0.5, 0.25, 1, 0.4, 0.1, 3, 0.5m pL M h k c k zυδ β= = = = = = = = =             

Figure 18a: Relation between B and km at y=0.8.      

Figure 18b:  Relation between B and km at y=0.3.
At: *

00.2, 10, 0.5, 0.3, 1, 0.4, 8, 7, 0.5pL M h s c k zυδ β= = = = = = = = =   
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Figure 19a: Volumetric flow rate Q with S, at M=10.                  
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Figure 19b: Volumetric flow rate Q with S, at M=20.
At: *

00.2, 0.5, 0.3, 0.5, 0.4, 0.1, 0.25, 3m pL h s c k kυδ β= = = = = = = =              

Figure 19c: Relation between volumetric flow rate Q and M. 
At:  *

00.2, 0.5, 3, 0.5, 0.4, 0.1, 0.25, 3m pL h s c k kυδ β= = = = = = = =           

Figure 20a: Volumetric flow rate Q with S, at c0=0.5    
At: *0.2, 0.5, 0.3, 30, 0.4, 0.1, 0.25, 3m pL h s M k kυδ β= = = = = = = =                  

Figure 20b: Volumetric flow rate Q with S, at c0=1 
At: *0.2, 0.8, 3, 10, 0.4, 0.1, 0.25, 3m pL h s M k kυδ β= = = = = = = =           
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Figure 20c: Volumetric flow rate Q with S, at 4.0* =pk                         
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Figure 20d: Volumetric flow rate Q with S, at * 15pk =
At: *

00.2, 0.5, 0.5, 10, 0.4, 0.1, 0.25, 0.4m pL h c M k kυδ β= = = = = = = =

Figure 21a: Relation between volumetric flow rate Q and *
pk

At: *
00.2, 0.5, 0.5, 10, 0.4, 0.1, 0.25, 0.4, 3m pL h c M k k sυδ β= = = = = = = = =                 

illustrates the flow pattern of A and the contour lines of A is shown in 
Figure 8b. The variation of A, with y direction for different values of 
M is shown in Figures 8c and 8d. From Figure 8e, it can be observed 
that the microrotation y component A decreases with increase in the 
magnetic parameter M. Figures 9a and 9b illustrate the variation of A 
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Figure 22b: Volumetric flow rate Q with c0 at S=3, M=30.
At: *0.2, 0.5, 3, 0.4, 0.1, 0.25, 3m pL h s k kυδ β= = = = = = =    

Figure 22c: Relation between volumetric flow rate Q and C0.

At: *0.2, 0.8, 3, 10, 0.4, 0.1, 0.25, 3m pL h s M k kυδ β= = = = = = = =

with y direction for different values of porous paramete ∗
pk . Figures 9c 

and 9d show that as ∗
pk  increases the microrotation y component A 

increases. The relation between A and coupling parameter c0 is shown 
in Figures 10a, 10b and 10c. By observing Figure 10c, the micro rotation 
y component A is increasing as the coupling parameter c0 is increasing.  
Figures 10a and 10b indicate A with y direction for different values of 
c0. Figures 11a, 11b and 11c illustrate A with y direction for different 
values of couple stress parameter s, the couple stress parameter ∗

pk  
increases and the microrotation y component A increases. From 

Figures 12a and 12b we show that A decreases with Kundsen number 
km increases.

Figures 13-18 illustrate the variation of the microrotation z 
component B with different parameters. The flow pattern of B is 
shown in Figures 13a and 13c for different values of M. The contour 
lines of B are shown in Figure 13b at M=10 and Figure 13d at M =10. 
From Figures 14a, 14b and 14c B is increasing as M increasing. The 
microrotation z component B decreasing as the porous parameter 

∗
pk  increasing, this is shown in Figures 15a, 15b, 15c and 15d. Figures 

16a, 16b and 16c depict the effect of coupling parameter c0 on B, as 
c0 increases the microrotation z component B increases. From Figures 
17a, 17b and 17c, it can be observed that B is decreasing with couple 
stress parameter s increasing. When Kundsen number km increases the 
microrotation z component B will be decreases this is shown in Figures 
18a and 18b.

Volumetric flow rate is given by equation (37) and it is numerically 
calculated and is shown in the form of Figures 19-22. From these we 
observe that volumetric flow rate Q increases when the couple stress 
parameter S increases, the magnetic parameter M increases and the 
Kundsen number km increases. But volumetric flow rate Q decreases as 
coupling parameter c0 decreases and porous parameter ∗

pk  decreases.

Conclusions
The present results make us to understand, numerically as 

well as physically, the influence of M, ∗
pk , c0, s and km on the slip 

flow of micropolar fluid through a porous medium in a rectangular 
microchannel effected by a uniform magnetic field.

(1) The velocity u and microrotation component A are decreasing 
with the increase in the value of M while the microrotation component 
B and volumetric flow rate Q are increasing with the increase in M.

(2) The increasing of porous parameter ∗
pk  acts to increase u and 

A, decrease B and Q.

(3) As the coupling parameter c0 is increasing the velocity u and A 
are increasing but volumetric flow rate decreasing while B decreases 
and increases in different regions. 

(4) Increasing the couple stress parameter s and hence decreasing 
in u and B but increasing in A and Q.

(5) The velocity u and volumetric flow rate Q are increasing with the 
increase in the Kundsen number km, but the microrotation component 
A and B are decreasing when km increases.

Figure 22a: Volumetric flow rate Q with c0 at S=3, M=10.         

Figure 21b: Relation between Volumetric flow rate Q and km. 

At: *
00.2, 0.5, 3, 10, 0.4, 0.1, 3, 0.5pL h s M k cυδ β= = = = = = = =
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