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Following the discovery of the Kerr-lens mode-locking, in recent 
years femtosecond (10−15second) solidstate lasers, such as those 
based on the Ti:Sapphire gain medium, have had a major impact in 
the field of ultrafast science. The enhanced performance of these lasers 
has led to their widespread use. Increasingly compact, user-friendly, 
reliable, and economical instruments have allowed femtosecond lasers 
to expand beyond research environments and find new applications 
such as in multi-user biology facilities, medical clinics, manufacturing 
environments, and even in mobile facilities and aircraft. A mode-
locked (ML) fiber laser cavity with a passive polarizer is an example of 
a technologically and commercially promising ultrafast device. It can 
be expected that improved mathematical modeling of ultra-short pulse 
passively mode-locked laser devices will help speed their development. 
Mode-locked laser pulses can be generated actively by use of an external 
element or passively via the Kerr-lens mechanism. The latter produces 
shorter pulses and will be the focus here.

A mode-locked laser refers to the frequency domain description of 
how ultra-short pulses are generated by a laser system. The requirement 
that the electromagnetic field be unchanged after one round trip in the 
laser means that lasing only occurs for frequencies such that the cavity 
length is an integer number of wavelengths. If multiple modes lase at 
the same time, then a short pulse can be formed, but only if the modes 
are locked in phase, i.e., the laser is mode-locked. Passive mode-locking 
can be described in terms of a saturable absorber, i.e., higher intensity 
is less attenuated than lower intensity. Nonlinearity is important in ML 
lasers because of the large intensities produced.  lasers and 
their ultra stable frequency combs have many potential uses in basic 
physics and technology and are becoming extremely important in many 
other areas of science ranging from enhanced material processing and 
measuring of the fundamental constants of nature to high-harmonic 
generation and optical clock technology.

Pulse propagation in a laser cavity is governed by the interplay 
of chromatic dispersion, self-phase modulation, saturable gain and 
filtering and intensity discrimination. In the anomalous regime many 
models have been used to describe these phenomena, including 
Ginzburg-Landau (GL) types and the so-called master-equation. 
The master-equation is a generalization of the classical nonlinear 
Schrodinger equation modified to contain gain, filtering and loss terms. 
Gain and filtering are saturated by energy (i.e. the time integral of the 
pulse power), while loss is represented by a cubic nonlinearity. If the 
pulse energy is taken to be constant the master-equation reduces to a 
GL type system. These equations have limited mode-locking capabilities 
and have been shown to exhibit a variety of solutions ranging from 
unstable, chaotic, to quasi-periodic and blow up.

We are interested in very particular solutions of the above equations 
termed solitons. A soliton is a form of solitary wave with unique 
properties: (a) it maintains its shape while it travels at constant speed 
and (b) it does not interact with other solitons while propagating. Two 
types of solitons exist: bright, namely solutions that decay at infinity 
and dark, solitons that tend to form on a constant background (tend to 
a complex constant at infinity).

In our research [1,2] we have been studying a power-energy 

saturation (PES) model, which, we find, naturally describes the locking 
and evolution of pulses in ML lasers that are operating in the soliton 
regime. For a pulse with amplitude ( , )u z t , power  =
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where the constant parameters g, T, l, Esat, Psat are positive, while d(z) 
is the dispersion and n(z) the nonlinear (Kerr) coefficient. Usually 
one considers a two step dispersion map where d(z) is taken to be a 
constant changing across different parts of the laser. Also, n(z)=1 inside 
the Ti:Sapphire crystal and n(z)=0 outside the crystal. The first term on 
the right hand side represents saturable gain, the second is nonlinear 
filtering and the third saturable loss.

Power saturation models also arise in other problems [3] in nonlinear 
optics and are important in the underlying theory. For example, in the 
study of the dynamics of localized lattice modes (solitons, vortices, etc) 
propagating in photorefractive nonlinear crystals. If the nonlinear term 
in these equations was simply a cubic nonlinearity, without saturation, 
two dimensional fundamental lattice solitons would be vulnerable to 
blow up singularity formation, which is not observed. Thus saturable 
terms are crucial in these problems.

In the anomalous dispersive (d(z) is a positive constant) regime 
and if there is insufficient gain in the PES, pulses dissipate to zero 
[1,2]. On the other hand, remarkably, a distinguishing feature of this 
model is that even under large gain, pulses do not blow-up nor do they 
exhibit instabilities. On the contrary: when the gain is greater than 
some threshold value g=g*, during the evolution, the pulse readjusts 
itself as it mode-locks into a stable localized mode, or soliton solution. 
Complicated evolution (chaotic, radiation, or strong growth) is not 
observed even when the perturbations cannot be considered small 
at the initial instant. The saturated (energy) gain and filtering, and 
saturated (power) loss, though crucial to the mode-locking mechanism, 
after evolution they are only found to be perturbative effects. The 
resulting modes are essentially the modes of the unperturbed system, 
i.e., hyperbolic secants.

Soliton pulses in normally dispersive (d(z) is a negative constant)
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mode-locked lasers can also be found [4] using the same PES equation. 
In this regime, pulses are wide and strongly chirped; unlike solitons 
their anomalous regime counterparts they are not well approximated 
by the unperturbed equations without gain, filtering and loss and thus 
perturbation theory is used to derive a set of uncoupled equations for 
the amplitude and the phase of the soliton pulse.

The latest development is that dark solitons can also been found 
[5,6] under the same model appropriately modified to take into account 
the fact that these soliton do not have decaying tails at infinity. It was 
found that general initial conditions evolve (mode-lock) into dark 
solitons under appropriate requirements also met in experimental 
observations.
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