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Introduction
Gaussian Markov random fields (GMRFs) are powerful and 

important tools for modeling spatial data. They have been widely used 
in different areas of spatial statistics including disease mapping, spatial-
temporal modeling and image analysis. Constructing a GMRF is 
straightforward: it is just a finite-dimensional random vector following 
a multivariate Gaussian distribution with additional conditional 
independence properties, hence termed as Markov. It is convenient 
and invaluable to combine the analytical results for the Gaussian 
distribution and the Markov properties, which enables us to solve a 
large class of statistical models. Historically, the most common method 
to make inference for the parameters in GMRFs has been maximum 
likelihood [1,2]. The behavior of maximum likelihood estimator is 
asymptotic in nature and its small sample behavior is often unknown. 
On the other hand, the Markov property has become a requirement for 
constructing efficient Markov chain Monte Carlo (MCMC) algorithms 
for GMRFs. Rue [3] showed that the Markov property makes it possible 
to apply numerical methods on sparse matrices. He proposed fast 
algorithms for sampling and evaluating the log-density of a GMRF, 
and conducted efficient MCMC-based inferences. Rue and Held [4] 
provides a comprehensive account of the main properties of GMRFs, 
emphasizes the strong connection between GMRFs and numerical 
methods for sparse matrices, and outlines various applications of 
GMRFs for statistical inference (e.g., spatial statistics, time-series 
analysis, graphical models).

More specifically, a GMRF is a Gaussian random vector x = (x1,…
,xn)’with Markov property: for some i≠j, xi and xj are independent 
conditional on other variables x-ij. It is defined over a set of discrete 
indexed locations connected by a graph labelled by G, which shows 
the conditional independence property of x. We say x is a GMRF with 
respect to G with mean μ and precision (inverse covariance) matrix Q 
if its density has the form

1/2/2 '1( ) (2 ) exp ( - ) ( ) .
2

nπ π −  = − − 
 

x Q x Q xµ µ                (1)

The Markov property in x is conveniently encoded in matrix Q: 
Qij= 0 if and only if xi and xj  are conditionallyindependent. The pattern 
of zero and non-zero elements in such a matrix is called its sparsity 
structure. The total number of non-zero elements divided by the 
total number of elements is called the density of the matrix. In most 

cases only O(n) of the n2 entries of Q are not zeroes, so Q has a very 
low density and is a sparse matrix. This allows for a fast Cholesky 
decomposition of Q as LL0, where L is the lower triangular matrix that 
inherits the sparseness of Q. Therefore, only non-zero terms in L are 
computed and the nodes can be reordered to decrease the number of 
the non-zero terms. The typical cost of this decomposition depends on 
the dimension of the GMRF: it is O(n) for one dimension, O(n3/2) for 
two dimensions and O(n2) for three dimensions. Using the Cholesky 
triangle, it is easy to produce random samples from a GMRF, and 
compute log-density of (1) and marginal variances; see Rue and Held 
[4] for more technical details.

GMRFs have been used in a wide range of common statistical
models such as generalized linear (mixed) models, generalized additive 
models, dynamic linear models, and spatial and spatio-tempora 
models, among others. Those models can be written as hierarchical 
models which assume a n-dimensional latent GMRF with a sparse 
precision matrix to be point-wise observed through nd conditional 
independent data y. The estimation of the models takes advantage of 
modern techniques for sparse matrices. We here focus on the (two 
dimensional) spatial GMRFs that have been extensively used in the 
hierarchical analysis for spatial data [5]. We briefly review popular 
spatial GMRFs, show how to construct them, and outline their recent 
developments and possible future work.

Construction of Spatial GMRFs
From definition (1), we can see that a GMRF is completely 

determined by its precision matrix Q: different Q’s bring different 
Markov properties to the field. To build matrix Q, one has to specify 
a particular neighbourhood structure, corresponding to the type of the 
spatial data. Below we show how to construct a few GMRFs that have 
been widely used in spatial statistics.
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Abstract
A powerful modelling tool for spatial data is the framework of Gaussian Markov random fields (GMRFs), which are 

discrete domain Gaussian random fields equipped with a Markov property. GMRFs allow us to combine the analytical 
results for the Gaussian distribution as well as Markov properties, thus allow for the development of computationally 
efficient algorithms. Here we briefly review popular spatial GMRFs, show how to construct them, and outline their recent 
developments and possible future work.
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GMRFs on irregular lattices
An important type of spatial data is so called areal data, where the 

locations of observations are geographic regions (e.g., the states of 
the US) with adjacency information. For areal spatial data, the first-
order GMRFs on irregular lattices are often preferred. To construct 
neighbourhood structure, we may define two regions are neighbors if 
they share a common border. Other ways to define neighbors are also 
possible. Between neighboring regions i and j, a Gaussian increment 
is defined as xi‒xj~N(0,1/wijτ), where wij are positive and symmetric 
weights. We can let wij= 1 if we believe region i equally depends on 
its neighbors, or let wijbe, for example, the inverse Euclidean distance 
between region centroids if we think the neighbors somehow contribute 
differently. Assuming the increments are independent, the density of 
this GMRF is given by:

(n 1)/2 2
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Where i ~ j denotes the set of all unordered pairs of neighbors. The 
corresponding precision matrix Q has entries

if ,
if ~ ,
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Where : ~ ,i j j i ijw w+ =∑  the summation over neighbors of node 

i on a lattice. Since the sum of each row is zero, Q is singular with rank 
n‒1. It is easy to see that the conditional distribution of xi is
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where the conditional mean of xi depends on its neighboring nodes x 
j through weights wi j and its conditional variance depends on weight 
sum wi+.

GMRFs on regular lattices

Another important type of spatial data are point-referenced data, 
where the spatial locations are points with known coordinates. When 
the coordinates constitute a regular lattice, one can construct first and 
second-order GMRFs as described below.

For a regular lattice with n=n1n2 nodes, let (i,j) denote the node 
in the ith row and jth column. In the interior, we can define the nearest 
four nodes of (i,j) as neighbors, i.e., (i+1,j), (i‒1,j), (i,j+1), (i,j‒1). 
Along the boundaries, we define the neighbors of (i,j) to be the two 
or three adjacent nodes. For example, the neighbors of (i,j) are (i,j+1) 
and (i+1, j) if (i,j) is the upper left corner. Without further weights, the 
corresponding precision matrix and the full conditionals of xi are given 
in (3) and (4) with wij=1, respectively. By weighting the horizontal 
and vertical neighbors differently, this GMRF can be extended to an 
anisotropic model [4]. In practice the first-order GMRF models may 
not provide sufficient spatial smoothing as we need. To increase the 
smoothness of the field, we can use higher-order neighborhood 
structures. One way to build a second-order neighborhood structure 
for xijin the interior is based on the increment

(xi+1,j+xi‒1,j +xi,j+1+xi,j‒1) ‒ 4xi,j

which is the sum of second-order differences in vertical and horizontal 

directions. For the nodes on or near the boundaries we need different 
increments; see Yue and Speckman [6] for details. By assuming 
all the increments follow independent Gaussian distributions, we 
build a second-order GMRF on a regular lattice. The coefficients 
of the corresponding Q can be found by expanding the quadratic 
terms of those increments. Using graphical notation, the conditional 
distribution of xij in the interior has mean and precision
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where the locations denoted by a ‘ • ’ represent the neighbors that xi j 
depends on and the number in front of each grid denotes the weight 
given to the corresponding ‘• ’ locations. This second-order GMRF is 
closely related to thin-plate spline [7], which has been widely used as a 
spatial smoother [1,8]. Yue and Speckman [6] showed that this GMRF 
can also be derived by discretizing the penalty function of the thin-
plate spline.

Continuous indexed GMRFs

The GMRFs mentioned above are all discrete indexed in nature 
and thus only work appropriately for the spatial data on lattices. If the 
observations are measured at irregularly-spaced locations, one often 
bins the locations to a regular lattice first and then apply the GMRF 
to the summary statistics calculated for the grids. As a result, we lose 
information from binning process and the the spatial resolution of 
the lattice significantly affects the inference. Another problem is that 
a regular GMRF can only capture the smoothness of a spatial field, but 
not its structure of spatial correlations, because it defines the precision 
matrix (not covariance matrix). Thus, we cannot make inference 
regarding the correlation between two locations.

To address the issues mentioned above, Lindgren et al. [9]derived a 
new class of continuous indexed GMRFs, which are explicit mappings 
of Matérn Gaussian fields that have been extensively used in statistical 
modeling of spatial data. Letting x(u) be a realization of spatial field x 
at location 2∈u , such GMRFs are derived by solving a stochastic 
partial differential equation (SPDE)

2 /2( ) [ ( )] ( ),ακ τ− ∆ =x Wu u 			                 (6)

where 2 2 2 2
1 2/ /u u∆ = ∂ ∂ + ∂ ∂  is the two-dimensional Laplacian 

operator, κ>0 is the spatial scale, α> 0 controls the smoothness of the 
realizations, τ>0 controls the variance, and w is the spatial Gaussian 
white noise. The link to the Matérn smoothness n and variance σ2 is ν= 
α‒d/2 and σ2=Γ(ν)(Γ(α)(4π)d/2κ2ντ2)-1, where d is the spatial dimension. 
A measure of the spatial range can be empirically derived as 8 / .ν κ
Lindgren et al. [9] solve the SPDE (6) using finite element method.They 
first approximate x(u) with piecewise linear basis functions defined on 
a triangular domain, and then turn (6) into a system of linear equations 
to derive the GMRF solution.

As shown in Lindgren et al. [9], the derived GMRF is the best 
piecewise linear approximation to the continuous solution to the SPDE 
given a triangulation. Since it is a GMRF representation of Matérn 
fields, it allows us to capture both spatial correlation and spatial 
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smoothness in a spatial process. Another exciting aspect of such models 
is their flexibility. There is no conceptual or computational barrier to 
extending them to being, for example, non-stationary, multivariate and 
spatial-temporal GMRFs. It is even possible to construct them on the 
sphere and other manifolds.

Extensions on GMRFs
Adaptive GMRFs

The smoothness of a GMRF is determined by the scale of 
increments, which is often invariant across the space. It means that the 
GMRF provides the same amount of smoothing at every location. This, 
however, limits the GMRF to stationary spatial processes only. We here 
present a few adaptive GMRFs that are recently developed to deal with 
non-stationary spatial processes.

Brezger et al. [10] extended the first-order GMRF in (2) to being 
adaptive by letting weights wi j vary with locations. More specifically, 
they take independent gamma priors on each wij, that is wij~ Gamma 
(1/2,1/2), making the marginal distribution of difference (xi ‒ xj) 
a Cauchy distribution. This approach allows varying strength of 
interactions between neighboring sites i ~ j, but without spatial prior 
structure.

Similarly, Yue and Speckman [6] extended the second-order 
GMRF in (5) to being non-stationary by spatially adaptive modeling its 
conditional variance, i.e., Var (xij|x‒ij) = (20τij)

-1. Thus, a small value of 
τij (large variance) leads to less smoothing, appropriate when xij shows 
increased local variation. Then, let τij = τγij, so that τ is the global scale 
parameter and γij controls the local smoothing of the field. Finally, 
a first-order spatial GMRF is taken as a prior on log(γij) to make the 
smoothing vary over the space. The resulting GMRF is able to capture 
both local and global features of a spatial process while retains the nice 
Markov properties for computation. Yue et al. [11] proposed a similar 
adaptive GMRF but with independent gamma priors on γij.

The SPDE models can be generalized to be non-stationary in 
several ways. Lindgren et al. [9] let spatial scale κ and precision τ in 
(6) to depend on the coordinate u, and allow them vary slowly through 
log linear models. Therefore, one can analyze how the spatial non-
stationarity depends on certain covariates. Bolin and Lindgren [9] 
used a nested SPDE approach to develop a large class of non-stationary 
covariance functions, such as oscillating covariance functions. Fuglstad 
et al. [12]introduced a new class of non-stationary spatial GMRFs with 
varying local anisotropy by adding a diffusion matrix that varies with 
position to the Δ operator in (6).

The adaptive GMRF models mentioned above have been 
successfully applied to the function magnetic resonance imaging 
(fMRI) data [10,13], the precipitation data [6,14], the global ozone data 
[15] and the neuroimaging meta-analysis [11].

Other extensions

Spatial-temporal GMRF models are extensions of spatial GMRF 
models to account for additional temporal variation. Think about 
a sequence of T graphs in time and let xit denote the ith node in tth 
graph. A common extension to a spatial-temporal GMRF is to take 
into account temporal neighbors in addition to spatial neighbors. The 
temporal neighbors can be the same nodes in the previous and next 
graphs, that is, xit-1and xit+1. The precision matrix of the corresponding 
GMRF can be written as (or ),T s s T= ⊗ ⊗Q Q Q Q Q  where QT and QS 
are precision matrices in time and space, respectively. We can use 
conditional autoregressive process (Besag, 1974) [16] to model 

temporal correlations and the spatial GMRFs presented above to model 
spatial correlations. Then, both QT  and QS are sparse matrices, making 
Q sparse as well. Cameletti et al. [17] employed a model of this type to 
perform spatial-temporal analysis on particulate matter concentration 
data.

It is possible to build a multivariate GMRF by extending the 
SPDE framework considered above [18]. The idea is to replace a single 
SPDE with a system of SPDEs. The co-variances matrices constructed 
with this approach are automatically symmetric positive definite. 
The sparse precision matrix of this multivariate GMRF facilitates its 
implementation to large data sets. Hu et al. [19] have shown that these 
models are related (but not equivalent) to the multivariate Matérn 
fields constructed by.

Implementation of GMRFs
The GMRFs are often implemented in a class of structured additive 

regression models, which are quite flexible and have been extensively 
used [20]. In these models, the response variable yi is assumed to belong 
to an exponential family, where the mean μi is linked to a structured 
additive predictor ηi through a link function g(•), so that g(μi) = ηi. The 
predictor hi accounts for various covariate effects in an additive way:

1 1

( ) ,
β

η α β ε
= =

= + + +∑ ∑
fn n

i i ji ki k i
j k

f u z 		                   (7)

Where fj’s are unknown functions of the covariates u_ji, βk’s 
represent the linear effect of zk, and the εi’s are error terms. The 
structured additive regression models cover a large class of spatial 
and spatiotemporal models, geostatistical and geoadditive models. 
The spatial GMRFs can be used to model fj when the covariate u_ij are 
spatial locations. The model (7) can handle various types of responses 
(e.g., continuous, binary and count data) and very different forms that 
the unknown fj can take (e.g., random, nonlinear and spatial effects). 
As a matter of fact, most Bayesian models used in spatial statistics are 
of this form [1].

To fit the spatial models of form (7), one can perform standard 
MCMC methods to simulate the posterior distributions. Using GMRFs 
as priors in the Bayesian hierarchical models, it is feasible to construct 
accurate GMRF approximations to the full conditionals (if they are not 
Gaussian), based on which efficient blockwise Metropolis-Hastings 
algorithms can be used to explore the posteriors [4]. One is able to 
take advantage of the sparseness of GMRFs and implement the fast 
Cholesky factorization algorithms to speed up the MCMC algorithms. 
This can now be easily done using an R package named spam developed 
by Furrer and Sain [21]. Recently, Rue et al. [22] has introduced a 
novel Bayesian inference tool based on integrated nested Laplace 
approximations (INLA). The INLA method can directly compute 
very accurate approximations to the posterior marginal distributions 
for latent Gaussian models. It is much faster than MCMC and can be 
easily implemented using R-INLA package (http://www.r-inla.org). 
The package contains a variety of popular GMRFs that are readily to 
be used.
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