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Introduction
Human cells communicate with each other through structural 

interfaces known as synapses. All human and animal movements 
start from synapses connecting a neuron and a muscle cell. This 
process happens at the neuromuscular junction (NMJ). Since the 
function of NMJ is very important, it has been extensively studied and 
is among the best characterized biological synapses. Several events 
comprise the signal process occurring in NMJ. Vesicles containing the 
neurotransmitter acetylcholine (Ach) (in humans) molecules fuse with 
the pre-synaptic membrane. The transmitters diffuse throughout the 
volume of the cleft and react with acetyl-cholinesterase (E, AE, acE) and 
acetylcholine receptors (R). Acetylcholinesterase is an enzyme which 
destroys Ach and limits its presence in the cleft. Various Ach receptors 
are embedded in the post-synaptic membrane. The binding of Ach to 
the Ach receptors causes the opening and closing of the Ach receptor 
channels (A2R, A2Ropen). These channels allow exchange of potassium 
and sodium ions, which causes an end-plate current to initiate in the 
post-synaptic region. Ach molecules which do not encounter AchE are 
eventually diffused out of the cleft into surrounding tissues or recycled 
at the pre-synaptic membrane [1-11].

Many techniques used to measure and describe NMJ processes 
are invasive and must be judiciously applied to prevent significantly 
disturbance of the function of NMJ [1,6-9,12]. Therefore, mathematical 
models for NMJ processes have been developed to analyze NMJ 
processes, which are difficult to measure with a direct experiment [13-
22]. The dynamic diffusion of Ach through the synaptic gap and the 
reactions of Ach with receptors at the end-plate as well as with AchE are 
crucial fundamentals of NMJ transmission process. This transmission 
process is essentially coupled diffusion and chemical reactions. The 
mathematical approach for analyzing this process is to solve the 
reaction-diffusion equations. Reaction-diffusion processes are studied 
with systems of coupled nonlinear partial differential equations (PDE). 
Nonlinear PDE in complex geometries are analytically intractable. 
Only a few simplified analytical models of NMJ processes [16,21,22] 
have been developed so far. Despite their contributions, these analytical 

models either do not incorporate complete reaction kinetics or simplify 
the geometry and the spatial dimensions. Numerical methods are 
viable for providing solutions to complex systems [13-20,23-24]. Over 
the last thirty years, several important models using reaction-diffusion 
kinetics to study the dynamics of synaptic chemical transmission have 
been published. Results revealed interesting results and advanced 
our understanding of NMJ processes [14,19,23,24]. In Khaliq et al. 
[25], a three dimensional (3D) model of reaction-diffusion processes 
occurring in the NMJ was presented. The system is simplified as a 
right cylinder using cylindrical coordinates. However in reality, NMJ 
actually occurs in rather complex geometry. In addition, active enzyme 
reactions do exist in NMJ. Inclusion of activated enzyme reactions is 
particularly important for a normal physical neuromuscular system. 
Therefore, in this paper, we consider the complex chemistry in NMJ 
associated with the reaction diffusion processes in complex geometry 
and conduct an indepth investigation of the mechanisms within NMJ. 
In terms of numerical methods, Kaihsu [26] and Cheng et al. [27] 
simulated NMJ with finite element method (FEM). Unfortunately, a 
general FEM is limited in reaching high order accuracy, aside from 
using smaller and more elements, as the basis functions are not 
orthogonal to each other. To achieve high resolution and accuracy, our 
model uses a spectral element method (SEM) in this paper. For the 
first time ever, the spectral accuracy and exponential convergence are 
provided for investigating the complex reaction diffusion system. SEM, 
a high order finite element method, first appeared in [28], could achieve 
high resolution with much less elements than a standard FEM. SEM 
has the capability of hp-refinement, especially the p-type discretization 
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Studying the synaptic signal transmission in the neuromuscular junction (NMJ) is central to the understanding 

of neuromuscular disorders such as myasthenia gravis disease. Investigating the dynamics of acetylcholine and 
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with receptors and enzymes. Simulation results agree with experimental measurement of the reported maximum 
number of open receptors during the course of a normal action potential. The time variation of populations of open 
receptor as well as concentration rates are investigated and discussed. This model has the potential to further the in 
depth investigation of dynamics within an NMJ.
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provides enhanced spatial resolution and flexibility as demonstrated in 
computational fluid dynamics and two-phase flow simulations [29-37]. 
In this paper, we propose a three dimensional model implemented with 
a nodal Galerkin spectral element method using orthogonal Lagrangian 
interpolants (on zeros of orthogonal polynomials) as basic functions. 
This model is used to simulate the complex chemistry with enzymes 
and reaction-diffusion processes in NMJ. The advantage of this model 
is that it not only resolves strong diffusivity and stiffness from reaction 
terms, but also provides spectral accuracy in the numerical solution 
for the associated complex geometry. Simulation results are discussed 
and compared with results from other researchers. The accuracy of this 
simulation model is illustrated.

NMJ Model
The neuromuscular junction (NMJ) is a three-dimensional (3D) 

complex reaction-diffusion system. The geometry of a synaptic cleft of 
the NMJ is similar to a flat cylindrical fork. The end of a pre-synaptic 
axon forms a knoblike bulge structure called terminal bouton. The 
membrane of the bouton is relatively smooth. However, the sarcolemma, 
i.e., the cell membrane of a post-muscle cell, contains invaginations 
which is called post junctional folds, and constitutes a rough surface 
[38]. According to [38], the gap between the flat pre-synaptic membrane 
and the jagged post-synaptic membrane is about 30 nm. Therefore, a 
NMJ is approximated as a flat cylindrical fork here. The synaptic gap, 
bounded by the pre-synaptic membrane at the top and post-synaptic 
membrane (also called end-plate) at the bottom, is accessible to the 
external environment at the edge, as shown in Figure 1. The complex 
biochemistry and processes are well explained in [12,39-42]. To simulate 
the reactions and processes within an NMJ, a series of 3D mesh for the 
NMJ cleft were generated, one of them is shown in Figure 2. In order to 
explain the structure and the mechanism of the NMJ system, the mesh 
is turned upside down in this figure to demonstrate the shape of the 
post-synaptic membrane and the reactions of the Acetylcholine (Ach) 
receptors. The neurotransmitter acetylcholine is released at the center 
of the pre-synaptic membrane and is diffused across the NMJ cleft. All 
kinds of immobile neuromuscular receptors are located at the post-
synaptic membrane. Aetylcholinesterase (AchE), an enzyme which 
hydrolyzes the neurotransmitter acetylcholine, is filled in the cleft. 
AchE is an extracellular matrix molecule [43] that concentrates on the 
post-synaptic membrane through binding. According to the research in 
[27,44], AchE is different from the Ach receptors which are embedded 
at the post-synaptic membrane; it is suspended by the collagen stalks 
which bound to the muscle membrane (post-membrane). The main 
function of AchE is to degrade Ach so that much fewer Ach can reach 
Ach receptors and the process of neurotransmission terminates. Because 

the synaptic cleft is very thin (30 nm), for convenience, we simplified 
the distribution of AchE as all over the cleft. This simplification does 
not affect its function as hydrolyzing Ach and thus does not influence 
overall results. 

In the governing partial differential equations (PDE) of the 
simulation model, we consider the following chemical reactions 
involving AchE:
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k

k
A E AE 				                     (1)

2→EkAE acE  				                    (2)

3→EkacE E   				                   (3)

where A, E, AE, acE represent the acetylcholine, acetyl-cholinesterase, 
Michaelis ligand-substrate complex, and acylate enzyme, respectively; 
and kE1, k-E1, kE2, kE3 are the forward and backward reaction constants 
for E, AE, acE, respectively. In a normal NMJ activity, the enzymatic 
destruction of acetylcholine by AchE is an important reaction. Our 
model has included all essential and fundamental processes which 
constitute the production, transmission and enzymatic destruction 
of acetylcholine involved in a neuromuscular action potential. The 
schematic reaction Equation (1), (2), and (3) represent the full kinetic 
cycle of acetylcholine initially reacting with acetylcholinsesterase and 
then proceeding to the final renewal of the enzyme. The reaction rates 
of the chemical reaction equations involving enzyme, as given above, 
are governed by the following ordinary differential equations:
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The acetylcholine is transported across the cleft and reacts with 
receptors located on the post-synaptic membrane. We expressed 
the rate change of concentration for the acetylcholine in a reaction-
diffusion equation with variable source terms in a Cartesian system:

2 2 2

2 2 2

2 1 1

( ) 2 ( )( ) ( ) ( )( )

2 ( ) ( )( ) ( )

−

− −

∂ ∂ ∂ ∂
= + + − + −

∂ ∂ ∂ ∂
+ − +

x y z R R AR

AR E E

A A A AD D D k A R k AR k A AR
t x y z
k A R k A E k AE

          (7)

where Dx, Dy, Dz are diffusion coefficients in the x, y, z directions, 
respectively; and R, AR, A2R stand for unbound, single and double 
bound closed acetylcholine receptors.

These equations take into consideration the importance of Figure 1: Demonstration of a typical neuromuscular junction.

Figure 2: Computational geometry of the NMJ cleft.
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acetylcholine breakdown by acetyl-cholinesterase, which has a very 
high catalytic activity, consistent with its role in nervous function 
[45,46]. This model is capable of investigating anisotropic diffusion in 
NMJ. Therefore, different symbols for diffusion coefficients in different 
directions are used in Equation (7). However, a single constant was 
actually used in our computation. The practical measurement of the 
diffusion coefficients involved here is discussed in [47-50]. After the 
non-dimensionalization, which is given in the Appendix, we rescaled 
the geometry as 0 ≤ x, y ≤ 5 and 0 ≤ z ≤ 0.5. Other dimensionless 
coefficients are given in the Appendix.

The boundary conditions for A are specified as:

( , ,0, ) 0∂
=

∂
A x y t

z
 				                     (8)

( , ,0.5, ) 0∂
=

∂
A x y t

z
 				                   (9)

2 2 2( , , , ) 0 5= + =A x y z t for x y   		                (10)

The initial conditions for A, R, E are given as:

0( , , ,0)=A x y z A  				                 (11)

0( , , ,0)=R x y z R  				                    (12)

0( , , ,0) , 0 0.5= ≤ ≤E x y z E where z   		               (13)

The above parabolic system with activated enzyme in the complex 
geometry is solved numerically to predict the concentration evolution 
of acetylcholine under normal neuromuscular operations. The above 
parabolic system with activated enzyme in the complex geometry 
is solved numerically to predict the concentration evolution of 
acetylcholine under normal neuromuscular operations.

Numerical Method
To obtain high accuracy in time, the ordinary differential equations 

(4), (5), and (6) for E, AE, acE are solved with the fourth order Runge-
Kutta scheme. We demonstrate the procedure for E only as the rest is 
similar:
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where the subscript g stands for global value, the subscript rk1 represents 
the first step in Runge-Kutta scheme, etc. The coefficients Erk1, Erk2, Erk3, 
Erk4 are determined as below:
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Where, AErk and acErk are chemical compound Michaelis ligand-
substrate complex and acylate enzyme in corresponding steps in 
Runge-Kutta scheme.

In space, a Galerkin projection was used to obtain the variational 
form of the Equation (7). Then a spectral element discretization was 
used to obtain numerical solutions in complex geometry. The Crank-
Nicholson scheme was implemented in time. For any element, labeled 
as e, in the original Cartesian coordinates, as shown in Figure 2, we map 
it to a standard element in ξ0, ξ2, ξ3, and then expand the solution for A 
in Equation (7) in terms of a tensor product of three one-dimensional 
Lagrangian polynomials on quadrature points, which are chosen to be 
zeros of Legendre polynomials:

( ) ( ) ( ) ( )1 2 3 1 2 3, ,ξ ξ ξ ξ ξ ξ= = Φ∑∑∑ ∑
Po Po Po

e e e e e e e
pqr p q r pqr pqr

p q r
A A h h h A  (19)

where, Po is the highest polynomial order of basic functions, which 
ranges from 2 to 20. For convenience, we chose the same Po in x, y, 
z directions, although they could be different according to specific 
conditions. Because of the collocation property of the nodal SEM, 
coefficients of basic functions are the numerical solutions at quadrature 
points. This is convenient in computing the nonlinear term and the 
reason we chose nodal basis instead of modal basis functions. Those 
reaction terms in Equation (7) can be represented as:
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where, the superscript e stands for the elemental solutions. For nonlinear 
terms, the coefficients were calculated in point-wise product of values 
of two species on quadrature points. We denoted this operation as.*in 
Equation (20), (21), (22), (23), and (24). Specifically, we use Equation 
(20) to illustrate this implementation. The nonlinear product (A) (R) at 
a quadrature point ξijk=(ξi, ξj, ξk) are computed as below:

( )( ) ( ) ( ) ( ) ( ) ( ), , , , , ,ξ ξ ξ  = Φ Φ       
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Due to the property of δ function:
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Equation (25) can be approximated as:
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The basis function in a standard element in tensor form is then:
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By a Galerkin projection, the weak form of Equation (7) could 
be obtained. After a global assembly, we obtain the linear system of 
Equation (7) in the matrix-vector form:
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Where M  is the global mass matrix:

( )1 2 3ξ ξ ξΩ= ∫ Φ Ψ∑ e

n
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e
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Where |J|e is the Jacobian of the element e; Ωe  is the integral 

domain; and N is the total number of elements. The diffusion matrix  
K consists of contributions from all directions:
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We use the Crank-Nicholson scheme for Equation (30):
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The major computational procedures for values of chemical 
compounds at the next time level n+1 based on the present level n are 
given below:

• Initialize values of compounds A, R, AR, A2R, A2Ropen, E, AE, acE 
at the time level n+1 with the same values at the time step n;

• Apply the Runge-Kutta scheme to obtain the values of 
R,AR,A2R,A2Ropen,E, AE, acE at the time level n+1;

• Substitute updated values of A, R, AR, A2R, A2Ropen, E, AE, acE 
from step 2 into Equation (33), then solve for the value of A at the time 
level n+1;

• Repeat steps 1 to 3, until the overall difference between two 
adjacent values of A is within the tolerance 1.0×10-12.

Numerical Results
A nodal spectral element method was implemented for numerical 

solution. Since the expansion order of basic functions relies on 
quadrature nodes, as the polynomial order increases, different nodal 
points are actually used. Figure 3 shows the top views of NMJ in the 
cross section at the plane z=0, with the highest polynomial order 
varying from 3, 4, to 5. The red lines are the boundaries of elements. 
The intersections of blue lines are actual quadrature points within 
each element. Zeros of Legendre polynomials are used as quadrature 
points since they cluster near boundaries naturally and help minimize 
discretization error.

Figure 4 illustrates the side views of the computational domain in 

the middle cross section (plane y=0) of NMJ with polynomial order 
being 3, 4 and 5. To better visualize the mesh, we exaggerated the ratio 
in z direction for the cases of 4th and 5th order expansion. This is because 
the synaptic cleft is very thin and when polynomial order is beyond 
five, quadratur epoints are crowded together in the plot and look like 
as if they were uniformly distributed. Since the diffusion process of 
the neurotransmitter acetylcholine mainly happens in the NMJ cleft, 
the contour lines of its concentration in the cross sectional plane of 
Y=0 are presented in four snapshots in Figure 5 to show the change in 
the concentration of acetylcholine in NMJ. Because the characteristic 
length, the thickness of an NMJ is of several orders of magnitude larger 
than the mean free path, the diffusion rate should be the same in all 
directions. In our numerical simulation results, we have observed that 
the diffusion rates along all directions are almost the same. If the effects 
of confinement and in homogeneity are necessary to be considered, our 
model is fully capable of describing different diffusion rates in space.

Predicting the number of open receptors as time goes by is an 
important indicator for an accurate model. Available references 
[24,39,51] have reported that the maximum number of open receptors 
during the course of a normal action potential is about 2000 at 0.3 ms. 
Our predicted time evolution of A2Ropen in the NMJ, at varied spatial 

  

Figure 3:  Computational mesh at different polynomial orders in 
the plane Z=0 for NMJ.

 

Figure 4:  Computational mesh at different polynomial orders in 
the plane Y=0 for NMJ.
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resolution, is shown in Figure 6. It is obvious that the number of A2Ropen 
increases rapidly during an initial transient

period to reach its maximum at about 0.4ms, and then gradually 
decreases. After 3×10-3 it dissipates away. This trend agrees with the 
experimental data from [26,27]. Table 1 in the Appendix lists the 
parameters of geometry, reaction rate constants, diffusion coefficients, 
and other parameters in the model.

To further demonstrate the evolution of double-bounded 
open acetylcholine receptors (A2Ropen) located at the post-synaptic 
membrane, we present the contour plots of the concentration of A2Ropen 
versus time in Figures 7-9. Because the most significant reaction and 
diffusion happen from the initial moment to 1.5 ms, we only focus on 
the time interval from 0 to 1.5 ms. The variation of the concentration 
of acetylcholine is similar to the trend in Figure 6. Due to the strong 
dissipation, the peak concentration of acetylcholine fades away quickly.

Conclusion
We have developed a full three dimensional model with realistic 

geometry using spectral nodal element method, a high order finite 
element method. The dynamics of the reaction-diffusion of acetylcholine 
and acetylcholine receptors are presented in the neuromuscular 
junction under conditions of activated enzyme. The assumption we used 
is a uniform distribution of acetylcholine receptors at post-synaptic 
membrane, which is accepted and used in open literature. Our results are 
in agreement with literature. The maximum number of open receptors 
during the course of a normal action potential is predicted to be around 
2000 at approximately 0.4 ms. With spectral accuracy, our model allows 
us to see the entire process and all local details of a normal NMJ activity. 
Besides, it provides a means to investigate complex processes such as 
how an abnormal distribution could affect the receptor dynamics 

 

Figure 5: Evolution of the concentration of Acetylcholine in the plane Y=0.

 

Figure 6: Evolution of the number of molecules of A2Ropen in the entire 
Neuromuscular Junction.

Figure 7: Evolution of the concentration of A2Ropen at post-synaptic 
membrane: Part 1.

Name Value (Unit) Explanation
kR

7 1 13.0 10 − −× Mol s Forward rate of reaction of R

k_R
4 11.0 10 −× s Backward rate of reaction of R

kAR
7 1 13.0 10 − −× Mol s Forward rate of reaction of AR

k_AR
4 11.0 10 −× s Backward rate of reaction of AR

kE1
8 1 12.0 10 − −× Mol s Forward rate of reaction of AE

k_E1 3 11.0 10 −× s Backward rate of reaction of AE

kE2 5 11.1 10 −× s Forward rate of reaction of acE

kE3 4 12.0 10 −× s Forward rate of reaction of E

Dx
261.0 10−× cm

s
Diffusion rate in x direction

Dy
261.0 10−× cm

s
Diffusion rate in y direction

Dz
261.0 10−× cm

s
Diffusion rate in z direction

R 55.0 10−× cm Radius of NMJ cleft

L 65.0 10−× cm Depth of NMJ cleft

Num 23 16.02 10 −× mol Number of Molecules per Mol

Table 1: The coefficients of the NMJ reaction-diffusion system.
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during an action potential by systematically varying the distribution of 
acetylcholine receptors according to the actual biomedical situations. 
Besides, our model is capable of studying the sensitivity of the dynamics 
of open receptors to changes in anisotropic diffusion parameters. 

Figure 8: Evolution of the concentration of A2Ropen at post-synaptic 
membrane: Part 2.

Figure 9: Evolution of the concentration of A2Ropen at post-synaptic 
Membrane: Part 3.

In addition, our model can analyze the subsequent effects of open 
receptor distribution when acetylcholine receptors are non-uniformly 
distributed at the post-synaptic membrane. Future investigations will 
focus on the study of an organophosphate neurotoxin entering the cleft 
from the outer periphery and enzyme regeneration with oxime therapy.

Appendix
Non-dimensionalization

The coefficients of the NMJ reaction-diffusion system are listed in 
Table 1:

In Table 1, we found out that coefficients range from 10-6 to 
107, spanning almost the entire range of double decision accuracy. 
Therefore, all equations were non-dimensionalized before computation 
starts in order to avoid large rounding error. We set the characteristic 
length scale to be Ls=10-5 cm and chose the characteristic diffusion rate 
Ds=10-10 cm2/s, so that the numbers are not too large and not too small. 
The non-dimensional values are:

5′= =
s

LL
L

 
0.5′= =

s

RR
L

 41 10′ ′ ′= = = = ×x
x y z

s

DD D D
D

2 10

10

10 1
10

−

−
′= = =s

s

LT
D

Especially, we want the scaled time to be unit so that temporal 
error is reduced significantly. The reaction rates in the table are scaled 
accordingly as they are constant, although variable reaction rates could 
be used in our model.
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