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Introduction 
Consider a system of first order stiff initial value problems (IVPs) 

of the form: 

( ) [ ] ( )'
0 0y x,   x a,b     y x y= ∈ =f y    (1)

System (1) is said to be stiff if all its eigenvalues have negative 
real part, and the stiffness ratio (the ratio of the magnitudes of the 
real parts of the largest and smallest eigenvalues) is large. Developing 
numerical methods for solving eqn. (1) in terms of accuracy, stability, 
convergence, computational expense, and data-storage requirements 
remains a major challenge in modern numerical analysis. However, 
some numerical methods developed for solving eqn. (1) have been 
introduced in Ababneh et al. [1], Abasi et al. [2,3], Babangida et al., 
Dhalquist [4,5], Curtiss and Hirschfelder [6], Cash [7], Ibrahim et al. 
[8-11], Musa et al. [12-19], and Suleiman, et al. [20] among others. 
According to researchers the stability problem appears to be the most 
serious limitation of block methods. The aim this work is to investigate 
the linear stability properties of the 2-point diagonally implicit super 
class of block backward differentiation formula with off-step points 
and demonstrate its suitability for solving eqn. (1). We start with some 
basic definition of stability of a multistep method given introduced in 
Ibrahim et al. [11]. 

Definition 1.1: A general k-step linear multistep method is defined as
k k

j n j j n j 
j 0 j 0

 y h f+ +
= =

α = β∑ ∑                (2)

where αj and βj are constants and αk ≠ 0 α0 and β0 cannot both be zero 
at the same time. For any k step method, αk is normalized to one. The 
method (2) is said to be explicit if βk=0 and implicit if βk ≠ 0.

Definition 1.2: The first and the second characteristic polynomials 
of the eqn. (2) are defined by: 

( )
k

j
j

j 0=

ρ ξ = α ξ∑    (3)

and

( )
k

j
j

j 0=

σ ξ = β ξ∑ , respectively.

Definition 1.3: A Linear Multistep Method is said to be zero stable 
if no root of the first characteristics polynomial has modulus greater 
than one and that any root with modulus one is simple [21]. 

Definition 1.4: A Linear Multistep Method is said to be A-stable if 
its stability region covers the entire negative half-plane.

Stability of the Method
In this section, we introduce the basic definition of a block method 

described in Fatunla [22] and Chu [23], Babangida and Musa [24]
reported by Ibrahim et al. [11].

Definition 2.1: Let Ym and Fm be vectors defined by

[ ]t
m n n 1 n 2 n r 1Y y ,  y ,  y , , y+ + + −= … ,

[ ]t
m n n 1 n 2 n r 1F f ,  f ,  f , ,f+ + + −= … , respectively.

Then a general k-block, r-point method is a matrix finite difference 
equation of the form

k k

m i m 1 i m 1
i 1 i 0

Y A Y h B f− −
= =

= +∑ ∑               (4)

where all Ai’s and Bi’s are properly chosen r × r matrix coefficients and 
m=0,1,2,... represents the block number, n=mr the first step number in 
the m-th block and r is the proposed block size.

Definition 2.2: The Block Method (4) is said to be zero-
stable if the roots R(j.j)=1(1)k of the first characteristic polynomial

( )
0

  [ ] 0,   
k

k i
i

i

R det A R Ao Iρ −

=

= = =−∑ , satisfies  1 Rj ≤ . If one of the roots 

is +1, we call this root the principal root of ρ(R).

Here, we will apply the same approach to formulas that has 
been derived, called diagonally implicit 2-point super class of block 
backward differentiation formula with off-step points. These formulas 
are given by

1 1 1
2 2

7 27 9 3
20 20 20 5n n nn n

y y y hf hf−
+ +
= − + − + ,

*Corresponding author: Bature B, Professor, Department of Mathematics and
Computer Sciences, Faculty of Natural and Applied Sciences, Umaru Musa Yar'adua
University Katsina, Nigeria, Tel:+59489625; E-mail: bature.babangida@umyu.edu.ng

Received May 19, 2017; Accepted September 04, 2017; Published September 
08, 2017

Citation: Bature B, Musa H (2017) Stability Analysis of the 2-Point Diagonally 
Implicit Super Class of Block Backward Differentiation Formula with Off-Step 
Points. J Phys Math 8: 245. doi: 10.4172/2090-0902.1000245

Copyright: © 2017 Bature B, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
In this paper, the stability region of the 2-point diagonally implicit super class of block backward differentiation 

formula with off-step points is to obtain and demonstrate its suitability for solving stiff ODEs. The stability region must 
cover the entire negative half-plane for the method to be suitable for solving stiff differential equations, analysis also 
shows that the method is zero stable.

Stability Analysis of the 2-Point Diagonally Implicit Super Class of Block 
Backward Differentiation Formula with Off-Step Points
Bature B* and Musa H
Department of Mathematics and Computer Sciences, Faculty of Natural and Applied Sciences, Umaru Musa Yar'adua University Katsina, Nigeria



Citation: Bature B, Musa H (2017) Stability Analysis of the 2-Point Diagonally Implicit Super Class of Block Backward Differentiation Formula with 
Off-Step Points. J Phys Math 8: 245. doi: 10.4172/2090-0902.1000245

Page 2 of 3

Volume 8 • Issue 3 • 1000245J Phys Math, an open access journal
ISSN: 2090-0902

Solving eqn. (11) for t gives the following roots:

t=0, t=0,t=0.350014 and t=1.                                                                                              (12)

From the definition 1.3, method (5) is zero-stable.

The stability region of method (5) is shown Figure 1.

From the definition 1.4, method (5) is A-stable.

Tested Problems
To validate the efficiency of the method developed, the following 

stiff IVPs are solved:

(1)     
'
1 1 220 19y y y= − −                 y1 (0)=2,                           0 ≤ x ≤ 20

 
'
2 1 219 20y y y= − − .             y2 (0)=0.

Exact solutions: y1 (x)=e -39x+e-x,       

Y2 (x)=e -39x+e-x,       

Eigenvalues: -1 and -39 Source: (Musa et al. [25])
'
1 1 2y 198y 199y= +

( )'
1 1 2 1y 198y 199y  y 0 1  0 x 10= + = ≤ ≤

( )'
2 1 2 2y 398y 399y       y 0 1= − − = −

Exact solution: ( ) x
1y x e−=   

( ) x
2y x e−= −         Eigen values: -1 and -200. 

Numerical Results
The numerical results for the test problems given in section 3 are 

tabulated. The problems are solved with 2-point diagonally implicit 
super class of block backward differentiation formula with off-step 
points.

The notations used in the tables are listed below:

2ODISBBDF=2-point diagonally implicit super class of block 
backward differentiation formula with off-step points method (Table 1).

1 1 1 1 1
2 2

11 50 280 12 16
141 47 141 47 47n n n nn n

y y y y hf hf+ − +
+ +

= − + − + ,

3 1 1 1 1 3
2 2 2

3 13 21 207 9 3
88 22 11 88 44 11n n n nn n n

y y y y y hf hf− + +
+ + +
= − + − + − +      (5)

2 1 1 1 3 3 2
2 2 2

19 29 316 189 892 12 16
1005 67 201 67 335 67 67n n n n nn n n

y y y y y y hf hf+ − + +
+ + +

= − + − + − + .

The method (5) can be rewritten in matrix form as follows:

1 3
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Definition 2.3: Let Ym and Fm be vectors defined by 

[ ]1 2, , , T
m n n n rY y y y+ + += … [ ]1 2, , , T

m n n n rF f f f+ + += … , r=2, and n=2m

Method (5) can be written in matrix form as follows:

( )0 1 1 0 1 1m m m mA Y AY h B F B F− −= + + .                                                                                             (7)

Where

0 1 0 1

7 27 30 0 0 0 091 0 0 0 20 20 50 0 0
2011 50280 1 1200 0 0 0 0 0 0141 47141 , , 207 321 1 0 0 0 0 0 013088 8811 22 0 0 0 0
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Substituting scalar test equation y'=λy (λ<0, λ complex) into eqn. 
(7) and using  h hλ = gives

( )0 1 1 0 1 1m m m mA Y AY h B Y B Y− −= + +                                                                                               (8)

The stability polynomial of (5) is given by

( ) ( )0 1 1 0 0Det A hB t A hB − − + =                         (9)

i.e.,
( ) 4 3 2 2 2 2 3 2 3 3 3

3 2 4 3 4 2 4 3 4 4 4

24874 6449 49463 10734 1447 4304 8283,
18425 18425 346390 865975 157450 15745 157450

4304 729 251472 129973 28704 2304 0
15745 173195 173195 173195 173195 173195

R t h t t t t h h t ht h t h t

h t h t ht h t h t h t

= − + + + + − +

− − + − + =
(10)

For zero stability, we set 0h =  in eqn. (10) to obtain

4 3 224874 6449 0
18425 18425

t t t− + = .                                                                                                              (11)
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Figure 1: Stability Region of the 2-Point DISBBDF with off-step points.
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• h=Step size.

• MAXE=Maximum error.

From the Table 1, the zero stability of 2ODISBBDF method is 
indicated by the decrease in error as the step length h tends to zero. The 
accuracy also improves as the step length is reduced. 

Similarly, the solution at any fixed point improves as the step length 
reduced. This can be seen from the above table when h is reduced 
(from 0.01, 0.0001, and 0.000001). The maximum error indicates that 
the numerical result becomes closer to the exact solution. Thus, the 
computed solution tends to the exact solution as the step length tends 
to zero.

Conclusion
The stability analysis of the 2-point diagonally implicit super class 

of block backward differentiation formula with off-step points for 
solving stiff IVPs has been studied. The analysis has shown that the 
method is zero and A-stable. Based on the numerical results, it can be 
concluded that the Block Method is suitable for stiff problems because 
of its A-stability property.
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