Stability of Convergence Theorems of the Noor Iteration Method for an Enumerable Class of Continuous Hemi Contractive Mapping in Banach Spaces

Akanksha Sharma*1, Kalpana Saxena2 and Namrata Tripathi1
1Department of Mathematics, Technocrats Institute of Technology, Bhopal, Madhya Pradesh, India
2Department of Mathematics, Govt. Motilal Vignay Mahavidyalaya, Bhopal, Madhya Pradesh, India

Abstract
The purpose of this is to study the Noor iteration process for the sequence \(\{x_n\} \) converges to a common fix point for enumerable class of continuous hemi contractive mapping in Banach spaces.

Keywords: Stability; Noor iterations; Hemicontractive mapping; Convergence theorem; Continuous pseudocontractive mapping

2000 Mathematics Subject Classification: 47J25, 47H10, 54H25

Introduction
Let \(E \) be a real Banach space and let \(J \) denote the normalized duality mapping from \(E \) to \(E^* \) defined by
\[
J(x) = \{ f \in E^* : \langle x, f \rangle = \|x\| \|f\| \|x\|^{-1} \|f\|^{-1} \text{ for all } x \in E \}
\]
Where \(E^* \) denotes the dual space of \(E \) and \(\langle \cdot, \cdot \rangle \) denotes the generalization duality pair.

It is well known that if \(E^* \) is strictly convex then \(J \) is single–valued. In the sequel, we shall denote the single–valued duality mapping by \(j \). Let \(K \) be a nonempty closed convex subset of Banach space \(E \) and \(T : K \to K \) be a self-mapping of \(K \).

Definition 3.1: (i) A mapping \(T \) with domain \(D(T) \) and range \(R(T) \) in a Banach space is called pseudocontrative mapping, if for all \(x, y \in D(T) \), there exists \(j(x - y) \in J(x - y) \) such that
\[
\langle Tx - Ty, j(x - y) \rangle \leq \|x - y\|^2
\]
(ii) A mapping \(T \) with domain \(D(T) \) and range \(R(T) \) in \(E \) is called a hemicontractive mapping if \(F(T) \neq \emptyset \) and for all \(x, y \in D(T) \), \(x \neq y \in F(T) \) such that,
\[
\langle Tx - Ty, j(x - y) \rangle \leq \|x - y\|^2
\]
(iii) A mapping \(T : K \to K \) is called \(L \)-Lipschitzian there exists \(L > 0 \) such that
\[
\| Tx - Ty \| \leq L \| x - y \| \quad \text{For all } \ x, \ y \in K
\]

Definition 3.2: If \(\{x_n\}_{n=0}^\infty \) and \(\{\beta_n\}_{n=0}^\infty \) are sequences of real numbers in \([0, 1] \) [2]. For arbitrary \(x \in E \), Let \(\{x_n\}_{n=0}^\infty \) be a Noor iteration defined by,
\[
x_{n+1} = (1 - \beta_n)x_n + \beta_n T q_n
\]
\[
c_n = (1 - \beta_n)x_n + \beta_n T r_n
\]

Lemma 3.3: Let \(E \) be a real uniformly convex Banach space [3]. \(K \) is nonempty closed convex subset of \(E \) and \(T \) a continuous pseudocontractive mapping of \(K \), then \(I - T \) is demiclosed at zero, that is, for all sequences \(\{x_n\} \subseteq K \) with \(x_n \to p \) and \(x_n - T x_n \to 0 \) it follows that \(p = T p \)

Lemma 3.4: Let \(\delta \) be a number satisfying \(0 < \delta < 1 \) and \(\{\epsilon_n\} \) a positive sequence satisfying \(\lim_{n \to \infty} \epsilon_n = 0 \) [4,5]. Then, for any positive sequence \(\{\nu_n\} \) satisfying: \(\nu_{n+1} \leq \delta \nu_n + \epsilon_n \). It follows that \(\lim_{n \to \infty} \nu_n = 0 \).

Results

Theorem 4.1: Let \(\{T_n\}_{n=0}^\infty \) be defined as above and \(F(T) \neq \emptyset \) and let \((E, \|\cdot\|) \) be a Banach space, \(T : E \to E \) a self-map of \(E \) with a fixed point \(p \), satisfying the contractive condition
\[
\langle Tx - x, j(x - x') \rangle \leq \|x - x'\|^2 \quad \text{For } x \in E.
\]
Let \(\{x_n\}_{n=0}^\infty \) be a Noor iteration converges to \(p \) and defined by the iteration
\[
\{x_n\}_{n=0}^\infty = \{\sum_{i=0}^{n} \alpha_i\} \quad \text{for any real sequence } \{\alpha_i\}, \{x_0\} \text{ is a real sequence in } (0, 1) \text{ and define as}
\]
\[
\epsilon_n = \|x_{n+1} - (1 - \alpha_n) x_n - \alpha_n T q_n \| \quad \text{Then}
\]
\[
\lim_{n \to \infty} \epsilon_n = 0 \quad \text{exists for all } p \in F;
\]
\[
\lim_{n \to \infty} d(x_n, F) = \inf \{d(x_n, p) : p \in F\};
\]
\[
\{x_n\}_{n=0}^\infty \text{ converges strongly to a common fixed point of } \{T_i\}_{i=0}^\infty \text{ if and only if } \lim_{n \to \infty} d(x_n, F) = 0
\]

Proof: Let \(p \in F \) and \(n \geq 1 \) by 3.1 we choose \(j(x_n - p) \in J(x_n - p) \) such that
\[
\| x_{n+1} - p \|^2 = \|x_{n+1} - p, j(x_{n+1} - p)\|
\]
\[
\| x_{n+1} - p \| \leq \| x_{n+1} \| + \| j(x_{n+1} - p) \| |
\]
\[
= \epsilon_n + \| (1 - \alpha_n) x_n + \alpha_n T q_n - ((1 - \alpha_n) x_n + \alpha_n T q_n) - p \|
\]
\[
= \epsilon_n + \| (1 - \alpha_n) x_n + \alpha_n T q_n - p + \alpha_n T q_n - p \|
\]

*Corresponding author: Akanksha Sharma, Department of Mathematics, Technocrats Institute of Technology, Bhopal, Madhya Pradesh, India, Tel: 07552751679; E-mail: akanksha0027@gmail.com

Received June 25, 2015; Accepted July 27, 2015; Published July 30, 2015

Copyright: © 2015 Sharma A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
\(\leq e_0 + (1 - \alpha) || x_0 - p + \alpha \beta || Tq_n - p || \)
\(= e_0 + (1 - \alpha) || x_0 - p || + \alpha \beta || p - Tq_n || \)
\(\leq e_0 + (1 - \alpha) || x_0 - p || + \alpha \beta || p - q_n || \)
\(= e_0 + (1 - \alpha) || x_0 - p || + \alpha \beta || q_n - p || \)

For the estimate of in (1) we get
\(||q_n - p|| \leq ||(1 - \beta_n)x_n + \beta_n Tq_n - p|| \)
\(= ||(1 - \beta_n)x_n + \beta_n Tq_n - ((1 - \beta_n) + \beta_n) p|| \)
\(\leq ||(1 - \beta_n)|| x_n - p || + \beta_n || Tq_n - p || \)
\(= (1 - \beta_n)|| x_n - p || + \beta_n || p - Tq_n || \)
\(\leq (1 - \beta_n)|| x_n - p || + \beta_n a || p - r_n || \)
\(= (1 - \beta_n)|| x_n - p || + \beta_n a || r_n - p || \)

Substituting (2) into (1) gives
\(||x_{n+1} - p|| \leq e_0 + (1 - \alpha) || x_0 - p || + \alpha || \beta || a || r_n - p || \) (3)

For \(||r_n - p|| \) in (3) we have, \(||r_n - p|| \leq ||(1 - \gamma_n)x_n + \gamma_n Tq_n - p|| \)
\(= ||(1 - \gamma_n)|| x_n + \gamma_n Tq_n - ((1 - \gamma_n) + \gamma_n) p|| \)
\(\leq ||(1 - \gamma_n)|| x_n - p || + \gamma_n || Tq_n - p || \)
\(= (1 - \gamma_n)|| x_n - p || + \gamma_n || p - Tq_n || \)
\(\leq (1 - \gamma_n)|| x_n - p || + \gamma_n a || p - x_n || \)
\(= (1 - \gamma_n) || x_n - p || + \gamma_n a || x_n - p || \)

Substituting (4) into (3) and using lemma 3.3
\(= e_0 + (1 - \alpha) || x_0 - p || + \gamma_n a || x_n - p || \)
\(= e_0 + (1 - \alpha) || x_0 - p || + \gamma_n a || x_n - p || \)
\(\leq 0 \leq 1 \) (5)

Therefore, taking the limit as \(n \to \infty \) of both sides of the inequality (5) and using lemma 1.6 we get
\(\lim_{n \to \infty} ||x_n - p|| = 0 \), That is \(\lim_{n \to \infty} x_n = x^* \)

By theorem 3.2 \(\| x_n - p \| \leq \| x_{n+1} - p \| \)