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Abstract

The purpose of this is to study the Noor iteration process for the sequence {x } converges to a common fix point
for enumerable class of continuous hemi contractive mapping in Banach spaces.
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Introduction

Let E be a real Banach space and let ] denote the normalized duality
mapping from E to E* defined by

J@)={f e E (x.f) =[x £

Where E* denotes the dual space of E and (..) denotes the
generalization duality pair.

xH=Hfooraller,

5

It is well known that if E* is strictly convex then ] is single-valued.
In the sequel, we shall denote the single-valued duality mapping by
j. Let k be a nonempty closed convex subset of Banach space E and
T: K — K be a self-mapping of K.

Definition 3.1: (i) A mapping T with domain D(T) and range
R(T) in a Banach space is called pseudocontrative mapping, if for all
X,y € D(T), there exists j(x — y)eJ(x — y) such that [1]

(Tx—Ty,j(x—y))SHx—sz (1)
(ii) A mapping T with domain D(T) and range R(T) in E is called

a hemicontractive mapping if F (T)=@ and for all x e D(T Yx' e F(T)
such that,

<Tx—x* ,j(x—x" )> SHx—x*Hz

(iii) A mapping T: K K is called L-Lipschitizan there exists L>0
such that

[ Tx=Ty[|<Ll[x =yl Forall x, yeK
Definition 3.2: If {oc }” ~and {B,}”

are sequences of real
n=0

numbers in [0, 1] [2]. For arbitrary x e E, Let {xn}::() be a Noor
iteration defined by,

X (1=, ) x,+ ¢, Tg,
qn = (1 _ﬁn)'xn +ﬂnTrn
r=(1-8,)x,+B,Tr,

Lemma 3.3: Let E be a real uniformly convex Banach space
[3], K is nonempty closed convex subset of E and T a continuous
pseudocontractive mapping of K, then I-T is demiclosed at zero, that is,
for all sequences {x,} « Kwith x, = p and x, —Tx, >0 it follows
that p=Tp

Lemma 3.4: Let J be a number satisfying 0<§ <1 and {en}
a positive sequence satisfying lim, , € =0 [4,5]. Then, for any
positive sequence {u,} satisfying: u,,, <du, +€,, It follows that
lim, , u, =0.

n—ow"'n

Results

n?

Theorem 4.1: Let {Tn}::l be defined as above and F=N_ F(T, #¢)
and let (E,||.|[)be a Banach space, T:E — E a self-map of E with a fixed
point p, satisfying the contractive condition

<Tx—x*,j(,\¢—x*)>SHx—x*H2 For X, cE.

Let {x”}:zl is converge to p and defined by the iteration
(3.2) where {ocn}:o:] is a real sequence in (0, 1) and define as
€=l x,., —(I-,)x,— <, Tq, || Then

lim, || x, — p|| exists for all PE F;

lim, . d(x,,F) ={inf | x, - plk peF};
{ xn} converges strongly to a common fixed point of {7, }

onlyif lim,_ d(x,,F)=0

” ifand

n=1

Proof:Let P€F and n>1by3.1wechoose j(x,—p)eJ(x,—p)
such that

Ilx, . —p ||2:<xn+l —p,j(X,M _p)>
%, =2l <N, —(1-,)x, -, Tg, | +(1-=,)x, +, Tg, = pll

= ¢, +ll(1-ec,)x, + ¢, Tg, — (1=, )+ c,)p |l

=e, +|I(I-cc,)llx, = pll+ec, (T, - p)|
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g, +(1=,)llx, - pll+ I Tq, - pll
n (1
(

<eg, +(1-, )llx, - pll+x<, allp—q,|

I
m
+

)
o, )llx, = pll+oc,llp =Ty,
-

=e, +(1-,)llx, - pll+ e, allg, - pll 1)

For the estimate of in (1) we get

g, = plI=I(1-5,)x, + 8,17, - pl

=I1(1=8,)x, +B,Tr,-(1-8,)+ B)pl

=l (1-5,)(x, = p)+ B,(Tr, - )|

<(1=B)x, = pll+B, 11T, = pli

=(1=-B)llx, = pli+B, Il p=Tr, |
<(1=B)x, = pli+Ballp-r,l

= (1=8)llx, = pli+Ballr,-pll )
Substituting (2) into (1) gives

I, -pl<e, +A=(-a)ec, —o, Ba)l|x, = pll+, Ba’lln,=pll  (3)
For 7, = p |l in (3) we have,

7, =pl=ll(1=7,)x, +7,Tx, —pl

=l(1=7,)x, +7Tx, (1-7)+7)-pl

|(1=7,)(x, = p)+7,(Ix, =p)l
(=) lx, = pli+7, 1 Tx, —pl

=(1=y)llx, = pll+r, lp-Tx, |
<(1=y)lx, = pli+r,allp-x,

=(1-7,+7a)llx,-pll 4)
Substituting (4) into (3) and using lemma 3.3

=, +1-(I-a)=, —c, Ba)llx, - pli+o, Ba* =y, +7,a)|lx, - pl
=e, (I-(I—a)x, -(1-a) %, fa—(1-a) e, f,y,a®)llx, - pl
<(1-(1-a)a-(1-a)apa-(1-a)apya’)|x,, - pll+e,

Observe that

0<(1-(1-a)a—(1-a)apa-(1-a)apya’)<1 (5)

Therefore, taking the limitas » — c of both sides of the inequality
(5) and using lemma 1.6 we get

lim,_, [lx,-p|l=0, Thatis lim,__x,_p

By theorem 3.2 || x, = p [l x,, = pll

Taking infimum over all P € F, we have,
d(x,,F)=,%llx, = pl<, 2l x, - pll=d(x, . F),

peF
Thus lim,,, d(x,, F) exist we finally prove (iii) suppose that
x, = p € F from (ii) and
d(x,,F)<||x, - pll—>0, We have lim,,, d(x,,F)=0 for n,meN
and p € F, it follows
From (1.3) that

Ix,., —x, Il x,,, —pll+llx, - pli< llx,-pll
Consequently,

Il x

n+m

-x, [I£2]|x,-F|=>0

Therefore {%,} isa Cauchy sequence. Suppose lim, ,,.x, =u for
someu € E . Then

d(u,F)zlim d(xn,F)zo

n—ow'

Since F is closed set, y e F

So, Noor iteration process is T —stable.
Conclusion

Thus, the stability of Noor iteration considerable for finding fixed
point for enumerable class of continuous hemi contractive mapping in
Banach spaces.
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