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Introduction
Stability theory plays a central role in systems theory and 

engineering. There are different kinds of stability problems that arise in 
the study of dynamical systems. In recent years, the problem of stability 
and stabilization of switched systems has attracted a considerable 
attention from control community [1-9].

Switched dynamical systems (SDS) are an important class of hybrid 
systems, which consist of a family of continuous-time or discrete-time 
subsystems and a switching law that specifies the switching between 
them [10]. The SDS [2] are found in many fields of application: 
transport, embedded systems, electronics power, aeronautics, chemical 
engineering, pharmaceutical, etc. It can be seen in these applications 
that interactions between discrete events and continuous phenomena 
give rise to complex system behavior that can only be properly 
controlled if the hybrid phenomena (continuous and discrete features, 
and interactions between them) are fully taken into consideration [3,5].

Limit cycles are one of the most important phenomena in nonlinear 
dynamical systems, and applied in many engineering fields [6]. While 
stability analysis of limit cycle is a fundamental problem and many 
theories such as Lyapunov function methods have been proposed, the 
problem of synthesizing a nonlinear system which has a stable limit 
cycle is also important [7,8].

In this paper we consider the following time invariant switched 
dynamic system (SDS) in 

stable limit cycle is also important [7, 8].

In this paper we consider the following time invariant switched dynamic system
(SDS) in IR2:

ẏ = v1Y
1(y) + v2Y

2(y) + v3Y
3(y) (1)

where Yi is in vector fields of class C1, the control vi ∈ {0, 1} for i ∈ {1, 2, 3} veri-

fying the condition
3∑

i=1

vi = 1 and the state y = (y1, y2) is in IR2.

The main objective is to propose a new constructive method for synthesizing a hy-
brid limit cycle for the SDC (1).

In this paper we use essentially the following result: we consider the nonlinear
SDS in the plan [7]

ẋ = u1X
1(x) + u2X

2(x) with ui ∈ {0, 1}, i ∈ {1, 2} (2)

The solution of the differential equation ẋ = Xi(x), i ∈ {1, 2} after elapsed time t
with initial condition x(0) = x0 is denoted X i

t(x0).

Definition 1 [7] Let us consider xc1 and xc2 two points in IR2, with xc1 �= xc2.
CC(xc1 , xc2) is the hybrid limit cycle of the SDS (2) ẋ = X i(x), i ∈ {1, 2}, between
the switching points xc1 and xc2, if and only if (δc1 , δc2) ∈ R2

+ exists such that:
xc1 = X1

δc1
(xc2) and xc2 = X2

δc2
(xc1). Then

CC(xc1 , xc2) = {X1
δ (xc2)/0 ≤ δ ≤ δc1} ∪ {X2

δ (xc1)/0 ≤ δ ≤ δc2}.
We recall a sufficient condition for existence and stability of a hybrid limit cycle:

Let consider two maps enough smooth γj : I ⊂ IR −→ IR2, j ∈ {1, 2}. Suppose
that γ1(t0) = γ2(t0) (the two trajectories intersect at t0) with γ′

1(t0) �= 0 and γ′
2(t0) �=

0

Definition 2 [7] We call that curves γ1 and γ2 are transverse if and only if γ1 cross
the curve γ2 in x0 = γ1(t0). We explain this property in the following figure:

case when curves γ1 and γ2 are transverse Example of γ1 and γ2 not transverse

x0 x0

2

2:
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ẏ = v1Y
1(y) + v2Y

2(y) + v3Y
3(y) (1)

where Yi is in vector fields of class C1, the control vi ∈ {0, 1} for i ∈ {1, 2, 3} veri-

fying the condition
3∑

i=1

vi = 1 and the state y = (y1, y2) is in IR2.

The main objective is to propose a new constructive method for synthesizing a hy-
brid limit cycle for the SDC (1).

In this paper we use essentially the following result: we consider the nonlinear
SDS in the plan [7]
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pij i i
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d X x
d X x
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−

=
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⟨Xj(x)|Xi(x)⟩pij ⟨dpij−1Xi(x)|Xi(x)⟩ ̸= ⟨Xi(x)|Xi(x)⟩pij ⟨dpij−1Xj(x)|Xi(x)⟩.

Theorem  

The two parameterized curves γ1, γ2 are transverse if 
( )( )1 2 0det (t ), 0o tγ γ′ ′ =  and pij is odd. Otherwise they are not transverse 

[7].
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ẋ = u1X
1(x) + u2X

2(x) with ui ∈ {0, 1}, i ∈ {1, 2} (2)

The solution of the differential equation ẋ = Xi(x), i ∈ {1, 2} after elapsed time t
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δc2
(xc1). Then

CC(xc1 , xc2) = {X1
δ (xc2)/0 ≤ δ ≤ δc1} ∪ {X2

δ (xc1)/0 ≤ δ ≤ δc2}.
We recall a sufficient condition for existence and stability of a hybrid limit cycle:

Let consider two maps enough smooth γj : I ⊂ IR −→ IR2, j ∈ {1, 2}. Suppose
that γ1(t0) = γ2(t0) (the two trajectories intersect at t0) with γ′

1(t0) �= 0 and γ′
2(t0) �=

0

Definition 2 [7] We call that curves γ1 and γ2 are transverse if and only if γ1 cross
the curve γ2 in x0 = γ1(t0). We explain this property in the following figure:

case when curves γ1 and γ2 are transverse Example of γ1 and γ2 not transverse

x0 x0

2

2

Thus, the system (1) becomes

( ) ( ) ( ) ( )
( ) ( )

2 3
1 1 2 2 1 3

2 3
1 2

     
       
y v v Y y v v Y y

u Y y u Y y
α α= + + +

= +



By using the fact that xd ∈ E23 and by using the theorem (2) there 
exists a hybrid limit cycle around of xd.

Remark 

In the case where the control v1=0, the SDS (1) rest around of point 
xd. Otherwise, we can reach the point xd by the vector field Y1(y).

Three Control Strategies of an Induction Heating 
Appliance

An induction heating appliance (induction hob) is made of 
adaptable-diameter inductors. Currently, one resonant inverter is 

dedicated to supplying each winding [6,10]. The current variations 
in the inductor produce heat energy in the metal vessel placed on the 
winding. The inductor and the load (vessel) are each equivalent to a 
resistor and an inductor in series. In the system studied here, the global 
inductor (R, L) is in series with a capacitor C to compose the resonant 
inverter (voltage inverter). The voltage source, E, provides adjustable 
DC voltage through a thyristors or diodes rectifier. An adequat DC 
voltage is applied to the series RLC circuit, with the control of the 
opening and closure of the four switches 1 2 1 2

1 1 2 2, ,T T T and T . Three 
configurations are possible (Figure 2):

1
1T and 2

1T  closed
2

1T  closed and 2
1T  open

1
1T  open and 2

1T  closed.

The objective is to control the uC voltage on a hybrid limit whatever 
the load.

The standard state-space representation of the induction heating 
appliance, with power state variables, is the following equation (3):

2/ 1 /
0

1 / 0 00

LL

CC

E EiR L Li
L

uCu
ρ
   − −        = + −                  




	              (3)

with ρ the control signal of the switches. If 
1
2

ρ = , the configuration 
1 is active, if ρ=1, the configuration 2 is active and, if ρ=0, the 
configuration 3 is active. Noting the state y=[ iL uC]T. The system (3) is 
equivalent to (1) with

( ) ( )1 2 3, (y) Ay BY y Ay Y y Ay B and Y= = + = −

where	
/ 1 /

A
1 / 0 0

ER L L
and B L

C

 − −   = =       
The parameter values are as follows: R=22Ω, C=47µF, L=0.2H, 

E=20V.

The set of possible points of equilibrium for this system is

{y=(y1,y2) ∈ 

stable limit cycle is also important [7, 8].

In this paper we consider the following time invariant switched dynamic system
(SDS) in IR2:

ẏ = v1Y
1(y) + v2Y

2(y) + v3Y
3(y) (1)

where Yi is in vector fields of class C1, the control vi ∈ {0, 1} for i ∈ {1, 2, 3} veri-

fying the condition
3∑

i=1

vi = 1 and the state y = (y1, y2) is in IR2.

The main objective is to propose a new constructive method for synthesizing a hy-
brid limit cycle for the SDC (1).

In this paper we use essentially the following result: we consider the nonlinear
SDS in the plan [7]

ẋ = u1X
1(x) + u2X

2(x) with ui ∈ {0, 1}, i ∈ {1, 2} (2)

The solution of the differential equation ẋ = Xi(x), i ∈ {1, 2} after elapsed time t
with initial condition x(0) = x0 is denoted X i

t(x0).

Definition 1 [7] Let us consider xc1 and xc2 two points in IR2, with xc1 �= xc2.
CC(xc1 , xc2) is the hybrid limit cycle of the SDS (2) ẋ = X i(x), i ∈ {1, 2}, between
the switching points xc1 and xc2, if and only if (δc1 , δc2) ∈ R2

+ exists such that:
xc1 = X1

δc1
(xc2) and xc2 = X2

δc2
(xc1). Then

CC(xc1 , xc2) = {X1
δ (xc2)/0 ≤ δ ≤ δc1} ∪ {X2

δ (xc1)/0 ≤ δ ≤ δc2}.
We recall a sufficient condition for existence and stability of a hybrid limit cycle:

Let consider two maps enough smooth γj : I ⊂ IR −→ IR2, j ∈ {1, 2}. Suppose
that γ1(t0) = γ2(t0) (the two trajectories intersect at t0) with γ′

1(t0) �= 0 and γ′
2(t0) �=

0

Definition 2 [7] We call that curves γ1 and γ2 are transverse if and only if γ1 cross
the curve γ2 in x0 = γ1(t0). We explain this property in the following figure:

case when curves γ1 and γ2 are transverse Example of γ1 and γ2 not transverse

x0 x0

2

2 such that y1=0 and − E ≤ y2 ≤ E}

It clear that

Y 1(y)=Y 2(y)+Y 3(y)

Let us now calculate the set E23={z ∈ ℝ2/det(Y 2(y),Y 3(y))=0, ⟨Y 
2(y),Y 3(y)⟩< 0 and p23(z) is even}.

We have.

( )2 3

1

2 3
2

det (y),Y (y) 0 0

(y),Y (y) 0

Y y
E y EY

 = = ⇒ − < << 

Furthermore, The condition p23=2 such that the trajectories of both 
Y 2 and Y 3 are not transverse is checked. Thus,

L RE CT1
1

T1
2

T2
1

T2
2

Figure 2: Induction Heating Appliance.
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are each equivalent to a resistor and an inductor in series. With power 

state variables, ρ the control signal of the switches. If 
1
2

ρ = , the 

configuration 1 is active, if ρ=1, the configuration 2 is active and, if 
ρ=0, the configuration 3 is active. It can be seen in these applications 
that interactions between discrete events and continuous phenomena 
give rise to complex system behavior that can only be properly 
controlled if the hybrid phenomena (continuous and discrete features, 
and interactions between them) are fully taken into consideration. 
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E23={z ∈ ℝ2/A−1B< z< −A−1B and p23=2} is the straight line that 
connects the two stable point xe1 et xe2 of vector fields Y 2(y) and Y 3(y). 
It follow that for each point in E23 there exists a hybrid limit cycle. If we 

choose 0,
6d
Ex  =  

 
 then xd ∈ E23.

Figure 3 gives the dynamics of the two modes of the SDS, associated 
with vector fields Y 2(y) (red curves) and Y 3(y) (blue curves) as well as 
the set E (straight line in black).

Conclusion
The current variations in the inductor produce heat energy in the 

metal vessel placed on the winding. The inductor and the load (vessel) 
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Figure 3: Dynamics of Y 2(y) and Y 3(y) and the set E23
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