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Introduction 
Lansoprazole is a new addition to the proton pump inhibitor (PPI) 

class and is approved for the treatment of heartburn associated with 
non-erosive gastroesophageal reflux disease (GERD) and healing all 
grades of erosive esophagitis (EE) [1,2]. Dexlansoprazole (dex), the 
dextrorotatory enantiomer of lansoprazole, was developed by Takeda 
Pharmaceutical Co., Ltd. US Food and Drug Administration (FDA) 
approved dex in 2009. Canada and Mexico have approved dex in 
Canada and Mexico in 2010 and 2011, respectively [3]. Dex is used 
in clinically administration, which shows excellent superiority in 
higher efficacy, lower elimination rate and less side effects than S-(-)-
lansoprazole (levo) [4]. Hence, it is essential to determine the absolute 
configuration of lansoprazole. 

Now a days, numerous approaches to determine the absolute 
configuration of chiral molecules have been promoted. X-ray 
crystallography determines the ACs unambiguously if a single crystal 
is available for molecules [5,6]. The Mosher ester has become a widely 
used method in organic chemistry. It is a type of NMR method for 
the determination of the AC of secondary alcohols or amines [7-9]. If 
X-ray crystallography is not accessible, the optically active compound
can be researched by optical rotation (OR) [10,11] electronic circular
dichroism (ECD) [12,13] and vibrational circular dichroism (VCD) [14-
16]. In general, AC of a chiral molecule can be deduced directly from its 
OR and/or its ECD spectrum using semiempirical correlations [12,17-
24]. But, this empirical approach was not always being successful and
couldn’t be relied on, unless structural analogs exhibiting comparable
chiroptical property were available [25]. Therefore, quantum chemical
calculations have been extensively used for calculating optical rotation
and ECD spectrum simulation, the correct absolute configuration can
be obtained even without reference molecule [5,6,26-30]. In principle,
theoretical calculation can simulate ECD spectra of any compounds if
correct conformational analysis is achieved. Besides, a new view has
been put forward that differences between the chemical shifts of similar 
carbons should be calculated more accurately than the shifts themselves 
because of cancellation of systematic errors [31]. Therefore, 13C-NMR
is a useful tool for stereochemical assignment lansoprazole not only has 
a chiral sulfur atom, but also is a flexible molecule. Currently, there are
several studies having been performed on the absolute configuration
of asymmetric sulfur atom, however, few reported on the flexible
molecule. On the absolute configuration of flexible chiral sulfur atom,
the stereochemical assignment of omeprazole enantiomers has been
determined by X-ray crystallography of a fenchyloxymentyl derivative
of (R)-omeprazole [32]. Rabeprazole has been determined by X-ray
crystallography of an intermediate [33]. Not with standing, there is

only one paper reporting the absolute configuration of lansoprazole 
enantiomers by similar experimental ECD curve to omeprazole [34]. 
Thence, the aim of this paper is to determine the absolute configuration 
of lansoprazole by the combination of experimental and theoretical 
calculation. Furthermore, a new approach to determine the dominant 
conformation of flexible chiral compound has been pointed out.

Materials and Methods
General remarks

Mass spectra (MS) was taken in ESI mode on Agilent 1100 LC-MS 
(Agilent Technologies, USA). HR-TOF-MS data was obtained by using 
an Agilent Accurate-Mass-Q-TOF LC/MS 6520 instrument (Agilent 
Technologies, USA). 1H NMR and 13C NMR spectra were recorded on 
Bruker AVANCE-600 MHz NMR spectrometer (Bruker, Germany) 
with tetramethylsilane (TMS) as an internal standard. Analytical HPLC 
was performed on an Agilent 1200 HPLC systems (Agilent, USA) 
with UV detection at 285 nm. The column temperature was 30 °C. 
The S-isomer determination was performed on an AGP chiral column 
(Daicel CHIRALPAK, 150 mm × 4.6 mm, 5 μm). The mobile phase 
was acetonitrile-pH 6.0 sodium phosphate buffer (10∶90) at the flow 
rate of 0.5 mL/min. An Agilent C18 column (150 mm × 4.6 mm ID, 
5 μm) was used for the other impurities determination. The mobile 
phase was composed of 1 volume of triethylamine and 60 volumes of 
water and adjusted to pH 6.2 with phosphoric acid and then mixed 
with 40 volumes of acetonitrile. The flow-rate was 1.2 mL/min. ECD 
spectra was recorded on a MOS-450 circular dichroism spectrometer 
spectropolarimeter (Biologic, France). The spectra was measured at 
solute concentration of 0.2 mg/mL using a 1 mm path length quartz 
cuvette at 25°C in a wavelength range of 190 to 400 nm, and methanol 
was used as solvent. All materials were obtained from commercial 
suppliers and were used without further purification. Column 
chromatography was run on silica gel (200-300 mesh) from Qingdao 
Ocean Chemicals (Qingdao, China).
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Preparation of dexlansoprazole

The synthetic process of these compounds referred to literatures 
[35,36] (Scheme 1). 

1H-benzo[d]imidazole-2-thiol (1) (3.14 g, 20.9 mmol) was added 
to a solution of sodium hydroxide (2.91 g, 72.7 mmol) and water (50 
mL) at 25°C, then the solution was stirred to homogeneous solution. 
Add 2-(chloromethyl)-3-methyl-4-(2,2,2-trifluoroethoxy)pyridine 
hydrochloride (25.00 g, 18.2 mmol) to the mixture at 30°C. After 
stirring for 3 hours, the solution was then filtered followed by being 
leached with water (25 mL), and finally dried under reduced pressure 
to afford 2-(((3-methyl-4-(2,2,2-trifluoro-ethoxy)pyridin-2-yl)methyl)
thio)-1H-benzo[d]imidazole (3) (5.68 g) as white solid. Titanium 
propoxide (0.90 mL, 3 mmol) and water (54 mg, 3 mmol) were added 
to a solution of diethyl L-tartrate (1.23 g, 6 mmol) and (3) (3.53 g, 10 
mmol) in toluene (20 mL) at 80°C. The solution was stirred for 60 min., 
after which diisopropylethylamine (1.75 mL, 10 mmol) was added to 
the mixture, and the solution was stirred for another 30 min. Next, the 
temperature was adjusted to 30°C, after which cumene hydroperoxide 
(80%, 3.6 mL, 20 mmol) was slowly added. After 1 h with the temperature 
of 30°C, the solution was added to 20% aqueous sodium thiosulfate (15 
mL). The aqueous phase was extracted with dichloromethane (20 mL, 
*3). The combined organic solutions were dried with anhydrous sodium 
sulfate, filtered, and the filtrate was distilled under reduced pressure. 
The residue was purified by chromatography on silica gel with ethyl 
acetate/petroleum ether (2:1) as the eluent to afford dexlansoprazole 
(42.84 g) as white solid. (68% yield, 99.8% purity, 100% ee). MS (ESI) 
m/z: 370.0 [M+H]+. 1H NMR (600 MHz, CDCl3) δ 8.29 (d, J=5.6 Hz, 
1H), 7.62 (dd, J=6.2, 3.2 Hz, 2H), 7.28 (dd, J=6.1, 3.1 Hz, 2H), 6.63 
(d, J=5.7 Hz, 1H), 4.82 (dd, J=35.8, 13.7 Hz, 2H), 4.35 (q, J=7.7 Hz, 
2H), 2.21 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 161.83, 152.94, 150.60, 
148.37, 143.85, 134.42, 124.28, 123.76, 123.25, 121.91, 120.36, 112.22, 
106.02, 65.35, 60.74, 10.95.

The similar procedure was conducted to afford S-(-)-Lansoprazole 
by diethyl D-tartrate. The theoretical mass of [M+Na]+ is 392.0656 
amu. The high-resolution mass spectrum shows the [M+Na]+ at m/
z=392.0646 amu. 13C NMR (150 MHz, CDCl3) δ 161.86, 152.99, 150.61, 
148.41, 143.86, 134.44, 124.31, 123.76, 123.30, 121.92, 120.34, 112.18, 
106.04, 65.38, 60.80, 10.99.

Computational details

The conformational analysis was firstly performed by arbitrarily 
fixing the absolute configuration of target compound, using the Spartan 
08 program [37] with the MMFF [38,39] molecular mechanics force 
field. Then all of the possible conformers were optimized at B3LYP 
level of theory using 6-311++G** [40,41] basis sets under PCM model 

[42,43] in Gaussian 09 package [44]. Frequency calculations based on 
previously optimized geometries were performed in order to ensure 
the minimum energy of the structure. Relative population of each 
conformer was valued on the basis of Boltzmann weighting factor at 
298K which was also calculated at the same level in order to simulate 
OR, ECD and 13C-NMR.

Results and Discussions
Conformational searching

In principle, the conformation of a molecule critically influences its 
physical and chemical properties [45-47]. Thus, reliable conformational 
analysis has fundamentally importance for computational results 
close to the experimental ones. It is shown that even minor changes 
in molecule conformer would lead to a significant data of theoretical 
OR and CD, in particularly, for simple nonpolar compounds [48-
53]. Kwit et al. have summarized three frequently used approaches 
for conformational searching of chiroptical flexible molecules [54]. 
A crucial issue to be addressed is that, the rotatable single bonds 
around chiral centre would show predominant role in the chiroptical 
properties of flexible molecules. Taking these aspects into account, a 
conformational searching of the title compound was performed by 
Spartan 08 program [37] with MMFF [38,39] molecular mechanics 
force field. Then, geometry optimizations and frequency calculation 
of all the possible conformers were performed using DFT/B3LYP/6-
311++G** [40,41] under PCM model [42,43] in Gaussian 09 package 
[44]. Boltzmann distribution [55] has been obtained according to the 
Gibbs free energies which were also calculated at the same level in order 
to simulate OR, ECD and 13C NMR. The correctness of conformational 
determination in flexible chiral compound can be achieved by the 
calculation results in the following, noting that it is a reasonable method 
for the conformational searching of flexible chiral molecule. OR value 
was calculated by DFT/B3LYP/6-311++G**, ECD was simulated by 
TDDFT/B3LYP/6-311++G** and 13C-NMR was performed by GIAO/
B3LYP/6-311++G**. The calculated data (OR, ECD and NMR) of dex 
is the Boltzmann-weighted average of all possible conformers. The 
relative Gibbs free energies and Boltzmann distribution of dex are 
shown in Table 1, and the conformers of dex is presented in Figure 1. 
The similar process was performed on the calculation of levo and the 
result is shown in Table 1 and Figure 2.

Optical rotation analysis

According to the literature, the AC of lansoprazole is R(+)/S(-) which 
are shown in Table 2. Specific optical rotation of dex and levo at 589.3 
nm have been predicted using B3LYP method and 6-311++G** as basis 
set, with the measured data given in Table 2. Under this circumstance, 
theoretical [α] findings show good agreement with experimental 
optical rotation at 589.3 nm if the AC is R(+)/S(-) [34]. the differences 
between theoretical and calculated [α] values are 204.6° and 173.9° for 
dex and levo, respectively. For the assignment R(-)/S(+), the deviations 
are 519.6° and 488.9° for dex and levo, respectively. It is worth noting 
that the bias between experimental and calculated data confirms the 
AC of lansoprazole is R(+)/S(-) and DFT/B3LYP/6-311++G** in PCM 
model is accurate to predicted optical rotation values.

ECD analysis

Although, electronic circular dichroism (ECD) is one of the most 
ideal techniques for the AC of molecule which has chromophores 
nearby chiral centre, however, calculations of ECD with density 
functional theory (DFT) using B3LYP/6-311++G** in PCM model have 
not been reported for chiral sulfoxides. The simulated ECD spectrum 
for dex which has been re-plotted with population weighting along Scheme 1: Synthetic procedure of dexlansoprazole.
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with experimental spectrum is shown in Figure 3. It can be seen that 
TDDFT calculations provided excellent agreement to the measured 
ECD band shape in spite of blue-shift which stem from the system 
error caused by theoretical calculations. The calculated ECD of dex 
showed a strong positive Cotton effect (CE) at 267 nm and a negative 
CE at 228 nm, similar to the curve in the experimental spectrum of dex. 
The simulated ECD of levo mirrored by that of dex, showing a positive 
CE at 228 nm, a negative CE at 267 nm, is shown in Figure 3. Similar 
to the OR calculations, the best agreement between the calculated 
and the experimental data illustrates the combination of measured 
and theoretical ECD can be used as a tool to determine the absolute 
configuration of chiral sulfoxide 

The origin of the CEs in ECD spectrum can be explained by 
molecular orbital (MO) analysis at the same level of ECD calculation 
(Figure 4). The conformer 1 is the most populated conformer of dex 
which Boltzmann population is 79.8%, hence, the electron transition 
analysis of dex is based on Conf.1. As inferred from the MO analysis, 
the significant positive CE at 267 nm was contributed by the electronic

transition (ET) from MO 95 to MO 96 involving π→π* transitions 
of benzimidazole ring and pyridine ring and sulfoxide n→π* transition. 
The negative CE at 228 nm is mainly dominated by transitions from 
MO 95 to MO 97, which could be ascribed to the electronic transitions 
from the chiral centre to the benzimidazole ring and π→π* transitions 
of pyridine ring (Figure 4).

On the side of ECD calculation it is important to note that the 
experimental and calculated ECD spectrum showed high degree of 
agreement, clarifying that the conformers of dex is correct.

 13C-NMR analysis
13C-NMR was simulated to support the stereochemical assignment, 

which can determine the stereocentre by chemical shifts of carbon atoms 

Conf. G (kcal/mol) △G (kcal/mol) Pi%
Dex-1 -1023249.80 0 79.8
Dex-2 -1023247.80 1.001 14.5
Dex-3 -1023247.26 1.542 5.7
Levo-1 -1023249.71 0 79.9
Levo-2 -1023247.67 1.039 13.6
Levo-3 -1023247.24 1.465 6.5

awhich related to the most stable conformer. 
bBoltzmann weighting factor (Pi%) based on△G.

Table 1: Gibbs free energies (G), relative Gibbs free energies (△G)a and Boltzmann 
weighting factor (P%)b of Dex and Levo conformers by using the DFT/B3LYP/6-
311++G(d,p) method.

Figure 1: The relative stable conformers of dex, and their calculated ECDs 

Figure 2: The relative stable conformers of levo, and their calculated ECDs.

No. Theoretical OR(º) Experimental OR(º)
Dex 356.6 152T
Levo -336.9 -163

Table 2: The calculated and experimental optical rotation (OR) of dex and levo.

Figure 4: The most important orbitals of the optimized conformer of dex-1.

Figure 3: Experimental ECD of Dex, and calculated ECDs of dex and levo.



Med chem
ISSN: 2161-0444 Med chem, an open access journal

Volume 5(6): 235-240 (2015) - 238 

Citation: Zhou Z, Li L, Yan N, Du L, Sun C, et al. (2015) Stereochemistrical Determination of Dexlansoprazole by Optical Rotation, ECD and 13C-NMR. 
Med chem 5: 235-240. doi:10.4172/2161-0444.1000270

in different stereo environments [31]. Among several computational 
means to calculate 13C-NMR, the “gauge-independent atomic orbital” 
(GIAO) method is one of the most common methods for predicating 
isotropic nuclear magnetic and it has been proven to be accurate 
and computational expensive [56]. The experimental and theoretical 
chemical shifts of dex and levo in 13C-NMR spectrum and the spectral 
assignments are presented in Table 3.

The differences in calculated and experimental chemical shift (δdex-δ 
levo) between dex and levo have been plotted in Table 3. It is obviously 
shows that the chemical shift deviations of C14 and C17 which are linked 
to chiral S atom are bigger than others in measured spectrum. However, 
the other carbons which show little difference in chemical shift seem 
less useful for structure assignment. The same phenomenon also occurs 
in theoretical spectrum. Hence, the chemical shifts of the carbon which 
are around chiral sulfur atom can be used as an approach to judge 
chiral atom. The experimental shifts were plotted against the calculated 
shifts, and the least-squares fit values of slope, intercept, and correlation 
factor (r2) were determined (dex: slope=0.9633, intercept=-3.3659, 
r2=0.9954; levo: slope=0.963, intercept=-3.301, r2=0.9955). Besides, 
the some conspicuous discrepancies for the atoms were evident. This is 

chiefly owing to the role of the electron correlation associated with the 
presence of the lone pairs on the sulfur atom bonded to carbon atom of 
C17. Notwithstanding the bias, the measured and predicated chemical 
shifts present highly relevance (Figure 5). These findings show that the 
proposed structures match the authentic structures very well.

Conclusion
In conclusion, we have conducted conformational searching to 

establish the stable conformations of dexlansoprazole. Then, optical 
rotation, electronic circular dichroism and 13C-NMR were simulated 
by DFT/B3LYP method at 6-311++G(d,p) basis set. Configuration 
assignments were confirmed by the strong correlation between 
measured and calculated OR data, 13C-NMR and ECD. Therefore, this 
approach should be promoted to determine the absolute configuration 
of chiral sulfoxide.
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aThe theoretical chemical shifts were empirically scaled by using the following equation: δscaled= (δcalc.−intercept)/slope.

Table 3: The experimental and calculated 13C-NMR of dex and levo.

C21 104.07 106.02 104.11 106.04 -0.04 -0.02
C17 70.16 60.74 70.03 60.8 0.13 -0.06
C33 65.36 65.35q 65.37 65.38q -0.01 -0.03
C28 11.53 10.95 11.56 10.99 -0.03 -0.04

Assignments
Dex (δiso) Levo (δiso) Deviation (δiso)

aCalc. Exp. aCalc. Exp. Δcalc. Δexp.
C25 160.13 161.83 160.11 161.86 0.02 -0.03
C14 154.36 152.94 154.38 152.99 -0.02 -0.05
C20 151.70 150.6 151.75 150.61 -0.04 -0.01
C24 146.78 148.37 146.79 148.41 -0.01 -0.04
C6 144.74 143.85 144.78 143.86 -0.04 -0.01
C9 133.08 134.42 133.10 134.44 -0.02 -0.02

C36 127.54 124.28q 127.58 124.31q -0.04 -0.03
C22 125.91 123.76 125.96 123.76 -0.05 0
C8 123.18 123.25 123.15 123.3 0.03 -0.05
C7 121.64 121.91 121.64 121.92 0.01 -0.01
C4 119.84 120.36 119.86 120.34 -0.02 0.02
C5 110.26 112.22 110.28 112.18 -0.03 0.04

 
Figure 5: Correlations of 13C chemical shifts of dex and levo.
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