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Introduction
The imbalance between energy intake and expenditure accompanied 

by the collapse of mechanisms protecting against the excessive 
accumulation of energy reserves are considered to be the main causes 
of obesity [1]. Accordingly, available treatments of obesity are aimed 
at decreasing calorie intake and/or increasing energy expenditure. 
However, long-term effects of various non-invasive methods including 
diets and pharmacotherapy with drugs reducing intestinal ingestion 
are unsatisfactory. Therefore, bariatric surgery, albeit expensive and 
potentially harmful, seems to be most effective [2]. Such situation has 
led to a renewed interest in developing therapeutic approaches which 
would reduce obesity by increasing energy expenditure. In this mini-
review the potential role of thermogenesis impairment in development 
of human obesity as well as possible limitations in the application of 
thermogenic compounds, namely agonists of the adrenergic receptors 
beta and thyroid hormone receptors, in obesity treatment are discussed.

Brown Adipose Tissue in Human Energy Expenditure
In small mammals and in human newborns, non-shivering 

(adaptive) thermogenesis in brown adipose tissue (BAT) is the most 
important regulatory mechanism for maintaining body temperature. 
Energy produced in the BAT mitochondria, due to the oxidation of 
lipolysis-derived fatty acids, is not used to produce high-energy bonds 
of adenosine-5’-triphosphate (ATP), but is released as heat, mostly 
thanks to uncoupling protein 1 (UCP1) [3]. 

It was believed that in humans, age progression is accompanied by 
a complete atrophy of BAT; however, novel methods of imaging led 
to the identification of BAT stores in several areas of the adult human 
body, as well as of cells reminding brown adipocytes dispersed within 
the visceral white adipose tissue (WAT) also known as beige/brite 
adipocytes [4]. 

The prevalence and activity of BAT differ between individuals and 
are inversely related to age, body mass index (BMI) and the total fat 
content [5]. BAT activity may vary even in the same subject, depending 

on cold exposure which is the most powerful and physiological 
stimulus for its activation. Activity of the cold-stimulated human BAT 
measured by the uptake of fatty acids and glucose (per gram of tissue) 
can be higher than in insulin-stimulated skeletal muscle [6]. Apart 
from its contribution to cold-induced thermogenesis, recent human 
studies demonstrated that BAT also participates in diet-induced 
thermogenesis, which may constitute up to 10% of whole body energy 
expenditure [7]. Therefore, stimulation of thermogenesis in brown 
adipocytes seems to be an attractive therapeutic pathway in treatment 
of obesity and related metabolic disorders. 

Regulation of Adaptive Thermogenesis
The function of brown adipocytes is under strict neurohormonal 

control. In organisms exposed to cold, stimuli from the Para 
ventricular nucleus and from the preoptic area of hypothalamus lead 
to the increased noradrenaline release from the sympathetic nerve 
fibers in the vicinity of BAT. Such β-adrenergic signaling, executed by 
the activation of the β1 adrenergic receptor (ADRB1), predominantly 
results in the proliferation of brown adipocytes, while signaling 
executed by the β2 and β3 adrenergic receptors (ADRB2 and ADRB3, 
respectively), results mainly in the activation of lipolysis (in WAT and 
in BAT) and of thermogenesis (in BAT) [8]. Chronic symphatetic 
stimulation, observed in patients with catecholamines secreting tumors, 
leads to the induction of UCP-1 positive brown-like (beige) adipocytes 
in WAT, and subsequently – to increased energy expenditure due to 
intense thermogenesis as well as to body fat reduction caused by the 
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increased lipolysis and glycogenolysis [9]. 

The adrenergic system interacts with thyroid hormones (TH) 
in controlling the non-shivering thermogenesis to counteract 
environmental stress. While adrenergic stimulation provides the 
means for rapid responses, triiodothyronine (T3) increases the capacity 
of cells to respond to catecholamines and maintains a metabolic rate 
appropriate for the availability and mobilisation of fatty acids from fat 
stores to ensure adrenergic responses [10]. Apart from the influence on 
ADRB density, T3 may also potentiate adrenergic stimulation via other 
mechanisms including enhancing the intracellular accumulation of 
cyclic adenosine monophosphate (cAMP) [11]. In turn, cold-induced 
noradrenergic stimulation of brown adipocytes results in the local 
activation of the type 2 5’-iodothyronine deiodinase, which catalyzes 
the conversion of the prohormone – thyroxin (T4) to T3. Subsequently, 
T3 acting by its nuclear receptors (TRs) bound to the thyroid hormone-
response elements present in the regulatory regions of various genes, 
including the genes for uncoupling proteins, increases their expression. 
Catecholamines may also potentiate the activity of T3 by increasing 
the retention of TRs in the nucleus or by increasing the recognition of 
DNA sequences through protein kinase A-mediated phosphorylation 
of TRs [12].

Knowledge of the mechanisms involved in regulation of 
thermogenesis in adipose tissue suggests two potential strategies for its 
pharmacological activation in treatment of obesity. The first strategy 
is based on adrenergic receptors beta (ADRBs) activation, while the 
second – on stimulation of thyroid hormone receptors (TRs). 

Adrenergic Receptors Beta as Targets for Obesity 
Treatment

ADRBs are members of the G protein-coupled receptor family that 
after activation induce the adenyl cyclase leading to the increase in 
intracellular cAMP levels. cAMP acts as a second messenger activating 
protein kinase A that subsequently results in the phosphorylation 
of multiple targets [13]. In adipose tissue, this process may result in 
adipocytes proliferation and induction of nonshivering thermogenesis 
(BAT) as well as in the mobilization of stored fatty acids for lipolysis 
(WAT). There is mounting evidence coming from animal models and 
from genetic studies that the dysfunction of ADRBs may play a role in 
the development of obesity.

Animal studies

Adipocytes from genetically obese (ob/ob) mice display an impaired 
response to beta-adrenergic stimulation due to significantly reduced 
expression of all ADRBs isoforms in BAT and WAT [14]. Crucial role 
of ADRBs in mediating thermogenesis and lipolysis was confirmed 
by experiments performed on mice with the combined targeted 
disruption of the three ADRBs (TKO mice) which have increased 
susceptibility to cold-induced hypothermia as well as to diet-induced 
obesity [15,16]. Animals with selective knockout of the adrb1 easily 
develop hypothermia due to the severely disturbed cold-induced and 
diet-induced thermogenesis and when placed on a high-fat diet – gain 
significantly more weight than wild type controls and develop features 
of the metabolic syndrome that include: impaired glucose tolerance, 
hypercholesterolemia, and hypertriglyceridemia [17]. Although 
targeted disruption of the adrb2 gene does not impair cold- and diet-
induced thermogenesis in mice and seems to have no influence body 
weight, adiposity and lipids metabolism, it impairs glucose homeostasis 
possibly by accelerating hepatic glucose production and insulin 
secretion [18]. Similarly, mice with adrb3 knockout, due to the normal 

function of the ADRB1, are able to maintain core body temperature in 
cold but their resting metabolic rate is lower compared to wild-type 
controls that predispose them to obesity [19].

Genetic studies
There is also indirect evidence from genetic studies that ADRBs 

receptors might participate in the regulation of body weight in humans, 
because certain polymorphisms in their genes were associated with 
metabolic complications and increased weight gain (Table 1). 

The ADRB2 gene (encoding ADRB2) is located on chromosome 
5q31-32 and composed of one exon, spanning 2 kb of DNA. This gene 
contains several single nucleotide polymorphisms (SNPs) both in the 
encoding sequence as well as within the 5’-untranslated region (UTR) 
that were found to be associated with obesity. In vitro studies showed 
that despite having no influence on ligand binding or adenyl cyclase 
activity, the A285G (rs1042713, causing Arg16Gly substitution) and 
C318G (rs1042714, causing Gln27Glu substitution) SNPs, located 
in the extracellular N-terminus of ADRB2, determinate the efficacy 
of the agonist-promoted receptor down-regulation. While the 285G 
variant enhances, the 318G is not only associated with a strong 
resistance to the down-regulation, but also encodes the protein that 
is less susceptible to degradation [20]. Creation of double mutants 
let to assess the combined effect of these two SNPs and showed that 
in the 285G/318G combination, the presence of the 285G variant 
determinates the biological effect and the protein is more susceptible 
to agonist-promoted down regulation, while the 285A/318G mutant is 
completely resistant to this process. The strong linkage disequilibrium 
between these two polymorphisms and their interaction may partially 
explain the discrepancies between the genetic studies regarding their 
association with obesity. The 318C allele was associated with higher 
risk of weight gain in inactive French and Swedish men as well as in 
Spanish women [21-23]. However, subsequent studies did not manage 
to replicate this association [24] or even pointed to the opposite variant 
as the causative one in Caucasians [25].

In turn, the 285G allele (alone as well as in combination with 
318G) was found to be associated with weight gain and blood pressure 
elevation in Japanese [24-26] although previous study carried in the 
same population denied this association [27]. 

The T allele of the ADRB2 C730T SNP (rs1800888, causing 
Thr164Ile substitution) located in the fourth membrane-spanning 
domain impairs both receptor affinity towards agonists as well as its 
interaction with G protein resulting in lower adenyl cyclase activity 
[28]. In some populations this variant was not only directly associated 
with obesity [29], but also considered as a predisposing one, since it 
might determine exercise capacity [30]. 

Another functional SNP in ADRB2 vicinity is a T-47C change 
(rs1042711, causing Arg19Cys substitution) located in 5’-leader cistron 
(a peptide encoded by a short open reading frame 102 bp upstream 
the ADRB2 coding block). The -47C variant results in lower ADRB2 
expression on protein level and its impaired ability to activate adenyl 
cyclase [31]. A combination of -47C/285A/318C (Cys19/Arg16/Gln27) 
was found to be a risk-haplotype for hypertension and obesity [32]. 
However, the interpretation of most case-control studies regarding 
the association between ADRB2 SNPs with obesity is difficult due to 
several reasons, including ethnic and gender-associated differences as 
well as the lack of haplotypes analysis and inadequate understanding of 
how the combination of different variants affect the receptor function, 
not to mention the gene-gene interactions. It is also worth mentioning 
that recent meta-analysis did not confirm the association of the ADRB2 
variants with obesity [33].
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 The G1251C SNP is located in the vicinity of the seventh 
transmembrane-spanning domain and may influence receptor coupling 
to Gs. In functional studies, the 1251C allele was associated with higher 
basal and isoproterenol-stimulated adenyl cyclase activity but also with 
greater response to beta adrenergic antagonist (metoprolol) [38-40]. 
However, in experiments performed in human adipocytes there was no 
difference between the two variants in the cells lipolytic sensitivity and 
maximum lipolityc capacity [41]. In some cohort studies, the 1251C 
allele was associated with higher BMI due to the enhanced adiposity 
[42], while other researchers did not confirm this association [43]. 
Interestingly, in a longitudinal study assessing risk of obesity over 24-
year observation period, a significant interaction between the ADRB1 
1251G (Gly389) and ADRB2 285G (Gly16) alleles in creating a risk of the 
weight gain in men was observed. This association could be explained 
by a cumulative effect of the lower activity of ADRB1 and lower ADRB2 
density. In woman, the ADRB1 1251G homozygosity was associated 
with obesity when interacted with ADRB3 190C variant, probably due 
to the combined effect of reduced functionality of the ADRB1 1251G 
allele and reduced sensitivity of the ADRB3 190C variant [44].

In summary, given the (i) ethnic heterogeneity, (ii) inadequate 
number of study participants (iii) linkage disequilibria between the 
studied variants and (iv) complex interactions among the genes 
encoding ADRBs, it is often difficult to draw firm conclusions from most 
case-control studies regarding associations of polymorphisms within 
these genes and obesity. The reliable meta-analysis was performed only 
for the ADRB3 T190C (Trp64Arg) SNP and on the basis of its results, 
one can conclude that the 190C (Arg64) is an obesity-predisposing 
allele in Asian populations. However, pathophysiological mechanisms 
linking this polymorphism with increased adiposity are less clear since 
results of the functional studies regarding its influence on receptor 
activity are unequivocal.

ADRBs ligands in treatment of obesity

Given their crucial role in mediating cold-induced thermogenesis, 
ADRBs seemed to be promising targets for obesity treatment. 
However, in this case imitating of physiology was more difficult than 
expected. While mild cold exposure in humans leads to the activation 
of a sympathetic response only in certain organs (BAT and peripheral 
vessels), systemic administration of nonselective β-adrenergic 
receptors agonists (ephedrine or isoprenaline) leads to the general 
adrenergic response and increases energy consumption by a number 
of organs, including the heart, liver and skeletal muscle, but exerts little 
effect on thermogenesis in brown adipocytes [6,45]. Doses of ephedrine 
that are effective in stimulation of BAT in rodents are unacceptable 

Among the various polymorphisms identified in the ADRB3 gene 
(encoding ADRB3, located on chromosome 8p12 and composed of two 
exons spanning 1.4 kb and 0.7 kb of DNA, respectively), the rs4994 
T190C SNP causing amino acids substitution (Trp64Arg) in the first 
intracellular loop of the receptor was the most frequently studied in 
the context of its relationship with obesity. In initial in vitro studies, 
the presence of the 190C allele was associated with lower receptor 
response to agonists as well as with impaired catecholamine-stimulated 
lipolysis. However, other researchers did not observe any differences 
in the receptor function between carriers of particular alleles [34]. In 
some case-control studies, carriers of the 190C allele showed tendency 
to lower metabolic rate, abdominal obesity and insulin resistance 
compared to the individuals homozygous for the 190T variant. Yet, 
the results of further studies were not so univocal, probably due to 
the heterogeneity of the studied populations. A large meta-analysis 
involving results of 97 case control-studies and over 44 000 individuals 
suggested association of the 190C allele with BMI in East Asians but 
not in Caucasians [35].

The T190C polymorphism (rs4994) remains in strong linkage 
disequilibrium with two synonymous SNPs: G1856T (rs4997) and 
G3139C (rs4998) constructing the two major haplotypes: 190T-1856G-
3139G – named a “Trp haplotype” and 190C-1856T-3139C – named 
an “Arg haplotype”. The in vitro studies analyzing influence of these 
haplotypes on ADRB3 function showed that adipocytes possessing 
the “Arg haplotype” present lower lipolytic activity in response to 
catecholamines [36].

Among SNPs identified in the ADRB1 gene (encoding ADRB1, 
located on chromosome 10q24-26 and composed of one exon 2.4 kb 
long) two of them, A231G (rs1801252 causing Ser49Gly substitution) 
and G1251C (rs1801253, causing Gly389Arg substitution), have been 
most commonly studied due to their high (more than 10%) frequency 
in different populations [37]. 

The A231G SNP is localized in the extracellular N-terminus of the 
receptor, near the first transmembrane-spanning domain. Although 
functional studies found no differences between the 231A and 231G 
alleles in ligands binding affinity, and in the basal and stimulated adenyl 
cyclase activity, the 231G variant was associated with the enhanced 
long-term agonist-promoted down-regulation of the receptor [38]. 
In a case-control association study, the 231G variant was found to 
be associated with higher BMI in type 2 diabetic patients [24]. It was 
proposed that the reduced signaling via ADRB1 in 231G positive 
individuals may be associated with attenuated lipolysis and therefore 
with the increase in BMI. However other studies did not confirm this 
association [37].

Gene Polymorphism (rs) Base substitution Amino acids 
substitution Variant Functional consequences Reference

ADRB1 rs1801252 A231G Ser49Gly 231G ↑  receptor down regulation [38]
(10q24-26) rs1801253 G1251C Gly389Arg 1251C ↑ interaction with G protein [39]

↑ response to antagonists [40]
ADRB2 rs1042711 T-47C Arg19Cys -47C ↓ ADRB2 expression [31]

(5q31-32) ↓ interaction with G protein [31]
rs1042713 A285G Arg16Gly 285G ↑  receptor down regulation [20]
rs1042714 C318G Gln27Glu 318G ↓  receptor down regulation [20]

↓  receptor degradation [20]
rs1800888 C730T Thr164Ile 730T ↓ affinity towards ligands [28]

↓ interaction with G protein [28]

ADRB3 (8p12) rs4994 T190C Trp64Arg 190C ↓ response to agonists                      ↓  
lipolysis    [34,36]

↑ - increased, ↓ - decreased
Table 1: Obesity-associated functional polymorphisms in genes encoding adrenergic receptors beta(ADRB).
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in humans because of their cardiovascular effects. Similarly, despite its 
unquestionable role in mediating cold-induces thermogensis clinical 
application of norepinephrine is limited due to its adverse effects on 
the cardiovascular system. Interestingly, while stimulation of ADRB1 
and ADRB2 by isoprenaline does not activate BAT in humans, their 
blockade by the administration of propranolol decreases glucose 
uptake in BAT in patients in thermoneutral conditions [46]. The 
possible explanation of this phenomenon is that high concentrations 
of sympatomimetics in the postsynaptic areas required for the effective 
stimulation of brown adipocytes cannot be achieved by their systemic 
administration.

Therefore, novel selective agonists of ADRBs have been developed 
in attempt to stimulate brown adipocytes proliferation and activation. 
The in vitro studies performed on human multipotent adipocyte-derived 
stem cells suggest that activation of ADRB3 receptors by a selective 
agonist (CL-316243) leads to the increased UCP1 mRNA synthesis 
and differentiation towards brown adipocytes [19]. In rodents, ADRB3 
ligands induce intense thermogenic and lipolytic response that results 
in the loss of fat mass without affecting the lean body mass and in the 
subsequent improvement of glucose control [47]. Moreover, acting in 
hypothalamus, CL-316243 occurred to be effective in reducing food 
intake in mice via leptin-independent mechanism and despite increased 
hypothalamic expression of the orexigenic neuropeptides [48]. Despite 
promising data from the in vitro and from animal studies, these agents 
occurred to have limited efficacy in humans, probably due to the (i) 
lower number of ADRB3 in human adipose tissue than in transfected 
cell-lines used for the in vitro experiments, (ii) poor selectivity of the 
compounds for the human ADRB3, and (iii) different contribution 
of white and brown adipocytes in rodents and in humans [49]. The 
lower expression of ADRB3 in adipose tissues of obese subjects may 
constitute another reason of low efficacy of these compounds in obesity 
treatment [50].

Therefore, one can conclude that identifying highly selective 
agonists that are able to selectively stimulate the low numbers of 
ADRB3 in human tissues is challenge and is additionally compounded 
by pharmacodynamic differences between rodents and humans.

Thyroid Hormone Receptors as Targets for Obesity 
Treatment

Thyroid hormone receptors (TRs) belong to the nuclear hormone 
receptor superfamily and act as ligand-dependent transcription factors 
regulating expression of target genes. Two genes THRA (located 
on chromosome 17q12-22, containing 11 exons) and THRB (on 
chromosome 3p22-24, containing 17 exons) encode TRα and TRβ 
respectively. Both of them exist in several isoforms due to the alternative 
splicing or use of alternative promoters. The isoforms have tissue- and 
organ specific localisation, with TRα1 being a predominant isoform 
in the brain, bone, heart and intestine, TRα2 – a variant receptor that 
lacks a functional hormone-binding site and antagonizes TRα1 action, 
TRβ1 dominating in liver, kidney and thyroid and TRβ2 being a chief 
form involved in the regulation of the hypothalamus-pituitary axis and 
in the neurosensory development [51]. Both TRα1 and TRβ1 are also 
expressed in human adipose tissue [50,52] and there is data coming 
from the observational, animal and genetic studies suggesting that they 
could constitute potential targets for obesity treatment. 

Observational studies

Weight gain and increased adiposity are typical features of 
hypothyroidism and cross-sectional analyses adjusted for age, BMI and 

total body fat confirmed independent and inverse association of free 
thyroxin (fT4) level with volume of the visceral fat stores [53]. There 
are also studies suggesting that thyroid status may influence not only 
general adiposity but also distribution of adipose tissue pointing at 
inverse correlation between the fT4 levels and visceral adiposity and 
at the positive correlation of TSH with the amount of subcutaneous fat 
[54]. This phenomenon can be partially explained by the differences in 
the TRs expression between the visceral and subcutaneous tissues as well 
as between obese and slim individuals [50]. The decreased expression 
of TRs in adipose tissues of obese individuals is also suggested as a 
potential mechanism of a relative resistance to thyroid hormone that 
manifests itself by the increased fT3 serum levels [52] and correlates 
positively with the increase in weight [55]. Another explanation for the 
elevation of fT3 (and thyroid stimulating hormone – TSH) in obese 
individuals is the regulatory action of leptin – an adipokine secreted 
by the adipose tissue that can promote expression of the thyreotropin 
releasing hormone (TRH) gene in the hypothalamus and increase 
peripheral conversion of T4 to T3 via stimulation of deiodinases. 
Finally, it is also postulated that thyroid function abnormalities 
observed in obese individuals may constitute an adaptive process 
aimed at the increase of the resting energy expenditure [56].

Animal studies

The metabolic phenotype of mice with targeted disruptions of thra 
is very variable, depending on the mutation. The thra -/- mice are cold 
intolerant and have higher energy expenditure in room temperature. 
Despite the increased appetite, they are leaner than the wild type 
animals. Interestingly these differences disappear in thermoneutral 
conditions, suggesting that exposition to cold results in thra-/- mice in 
activation of facultative thermogenesis pathway (increased sympathetic 
activation) that is more energy demanding and associated with relative 
resistance to diet-induced obesity [57]. Animals with frame shift thra 
mutations (TRα1-P398H and TRα1-L400R), resulting in reduced T3 
affinity and/or decreased binding to the cofactors, have reduced cold-
induced thermogenesis. In contrast, TRα1-R384C mice (with decreased 
receptor affinity towards T3) are hyperfagic and resistant to obesity due 
to a centrally induced hypermetabolism caused by apo-TRh1 (binding 
DNA without binding T3). In turn TRα1-P453H mice (with impaired 
receptor binding capacity) demonstrate increased body fat and insulin 
resistance [58].

In analogous experiments with thrb-/- mice, no major disturbances 
in body weight regulation and cold-induced thermogenesis have been 
observed, while in mice with targeted thrb mutations severe growth 
retardation is accompanied by an impaired weight gain. It is suggested 
that high T3 levels lead in these animals to the increased activation of 
TRα1 [59]. 

Genetic studies

Heterozygous mutations within genes encoding TRs, causing 
reduced receptor affinity towards T3 or impaired interaction with 
transcription cofactors, lead to the development of resistance to 
thyroid hormone (RTH) syndromes [58]. The clinical picture of RTH 
may vary depending on the affected TR isoform and on the type of 
the mutation which can be inherited or occur de novo only in some 
organs and tissues [60]. Although over 170 different mutations in 
THRB have been described to date, in general the RTHβ, caused by 
heterozygous mutations in the ligand-binding domain of THRB, is 
characterized by high serum TH levels with nonsuppresed TSH leading 
to goiter, tachycardia, hyperfagia and raised energy expenditure [58]. It 
is speculated that hyperfagia and increased resting energy expenditure 
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observed in patients with classical RTHβ is mediated by elevated TH 
acting centrally on TRα [61]. 

Patients with mutations in the THRA region unique for TRα1, 
causing a very rare RTHα has normal body temperature, but lower 
basal metabolic rate and tendency to gain weight with age [62].

A recent study suggest that two SNPs (rs12939700 C1890A and 
rs1568400 A-635G) located in the critical regions of THRA involved in 
the regulation of splicing may contribute to the development of obesity 
[63]. In high cardiovascular risk cohort carriers of the rs12939700 A 
allele had higher weight and higher prevalence of obesity than CC 
homozygotes. In turn, in general population and in the longitudinal 
study, individuals homozygous for the G variant of the A-635G SNP 
had significantly higher baseline BMI as well as higher increase in 
weight and in waist circumference after the 6-year follow-up. What is 
interesting, the analysis of this SNP in high cardiovascular risk patients 
showed a gene-diet interaction: only the individuals with GG genotype 
and a high intake of saturated fats showed a significant association with 
increased BMI. None out of several other SNPs identified in THRA and 
THRB was associated with obesity [64]. 

TRs ligands in treatment of obesity

In animal model of obesity (ob/ob mouse), the administration 
of exogenous T3 decreases body weight and body fat without a 
significant change in body protein content [65]. There is a lack of well-
designed prospective studies regarding the use of thyroid hormones 
in euthyroid obese patients. Available studies were conducted on 
relatively small number of patients and the effect of hormone therapy 
on the weight loss was not consistent [66]. Use of thyroid hormones 
in supraphysiological doses is associated with serious cardiological 
complications and osteoporosis and these effects are traditionally 
associated with the activation of TRα receptors. Therefore, a number 
of selective TRβ agonists are being tested for their efficacy in obesity 
treatment. The use of selective TRβ ligands has been linked to metabolic 
improvement in animal models of diet-induced obesity, nonalcoholic 
liver disease, and genetic hypercholesterolemia. GC-1, an agonist with 
10-fold higher affinity towards TRβ compared to TRα, was found to 
accelerate metabolic rate and reduce fat mass in rats without causing 
heart hypertrophy and bone mass loss [67]. The treatment of rats with 
another TRβ selective agonist GC-24 partially prevented the metabolic 
alterations (e.g. hyperisnulinemia and hypertriglicerydemia) associated 
with a hypercaloric diet by increasing energy expenditure in BAT [68]. 
However, this effect was more pronounced in initially normal-weight 
than in obese animals [69]. Another TRβ selective agonist KB-141 
increased metabolic rate and lowered plasma cholesterol levels without 
tachycardia in lean rats. Moreover, its administration to obese Zucker 
fa/fa rats improved glucose tolerance and insulin sensitivity suggesting 
that selective TRβ activation may be a useful strategy to attenuate 
features of the metabolic syndrome [70].

Clinical trials with the use of selective TRβ ligands proved their 
efficiency in improving the lipid profile, while no significant effect on 
weight loss was noted, suggesting that the regulation of basal metabolic 
rate in humans is also dependent on TRα signaling [71]. This theory 
is supported by the experiments performed on hypothyroid mice, 
in which the treatment with the selective TRβ agonist (GC-1) alone 
failed to restore proper thermogenic function. It is suggested that TRα 
mediates in synergism between T3 and the adrenergic pathway, while 
induction of UCP1 expression depends on TRβ activation [72]. TRα (as 
it was mentioned above) seems to be also important in T3-dependent 
central regulation of satiety [73]. New TRα selective agonists are being 

studied in order to improve our understanding of the role of this 
isoform in termogenesis and other T3 regulated processes [74]. The 
effectiveness of these compounds, however, may be limited due to the 
decreased expression of THRA and THRB genes in adipose tissues of 
obese individuals [50,52]. 

Final Remarks and Conclusions

The worldwide epidemic of obesity creates a need of developing 
new non-invasive methods of its treatment. Given the promising results 
of the in vitro and animal studies, the activation of thermogenesis in 
adipose tissue via adrenergic beta receptors and/or thyroid hormone 
receptor ligands seems to be an attractive therapeutic approach. 
However, the results of studies regarding the use of these compounds 
in the treatment of obesity in humans are largely disappointing. 
Among the probable causes of these discrepancies one should list: 
(i) differences in the mechanisms regulating thermogenesis and in 
its role in the body’s energy expenditure in humans and rodents, (ii) 
genetic variations (polymorphisms and mutations) that may impair the 
function of the target receptors (ADRBs and TRs), and (iii) a decreased 
expression of ADRBs and TRs in adipose tissues of obese individuals 
that can significantly reduce the effectiveness of the therapy. 
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