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Introduction
Healthcare expenditures continue to rise around the world. 

Developed countries see their healthcare costs grow faster than the 
gross domestic product (GDP). Increasing demand for healthcare from 
an aging population is supplemented by inefficient use of available 
resources and insufficient supply of medical facilities and personnel.

Hospitals play an important role in healthcare industry. They 
especially struggle with meeting the growing patient demand. 
Inefficiencies in hospital operations can lead to decline in quality and 
unnecessarily high cost of care. One essential part of these operations 
is related to capacity planning and management. Capacity planning 
activities can be classified according to time: strategic (long-term), 
tactical (intermediate), and operational (short-term). This includes 
capacity decisions for allocating equipment, rooms, personnel 
(especially nurses) and determining the proper number of inpatient 
beds to meet the changing demand.

Bed planning is complex since the actual number of occupied 
beds follows a stochastic process based on patient arrivals and service 
times. It is not a trivial task to determine the trade-offs between the 
requirement for meeting the peak demand versus efficient utilization 
of resources. All three levels of planning can be present: for example, 
strategic level involves defining the size of the hospital units using the 
number of staffed beds; tactical planning involves bed re/allocation and 
reservation; and operational planning covers admission issues.

Bed capacity planning relates to strategic decisions, and historically 
it is strongly influenced by powerful stakeholders, for example, 
regulators, healthcare policy makers, and insurance companies [1,2]. 
“Hospital bed capacity decisions have traditionally been made based 
on target occupancy levels-the average percentage of occupied beds. 
Historically, the most commonly used occupancy target has been 85%... 
Until recently, the number of hospital beds was regulated in most states 
under the Certificate of Need process, under which hospitals could 
not be built or expanded without state review and approval. Target 
occupancy levels were the major basis for these approvals [3]. ”These 

demonstrate the necessity of taking into account external restrictions 
for hospitals in capacity decision making.

In the United States, a new hospital bed costs more than “$1 
million, and the average cost per day for a hospital stay is thousands 
of dollars” [4,5]. Most hospitals are non-profit and are under constant 
pressure to cut costs. Their revenue is tightly regulated and depends 
on compensation. Their social and saving-life missions may have 
direct conflicts with financial realities. Quality in healthcare has dual 
requirements: it includes not only a set of performance characteristics 
for any service (for example, short waiting time), but also the medical 
outcome, which may affect the admission decisions. There is also the 
issue of accessibility, which may conflict with price and quality, and 
may influence many decisions.

Traditionally, hospital inpatient services are organized into 
care units/types, clinical services, and specialties (e.g., cardiology, 
gynaecology, neurology). Upon admission to the hospital each patient 
is assigned a diagnostic related group (DRG). There are 467 DRGs, 
and they are organized into 25 Major Diagnostic Categories (MDCs). 
The diagnoses in each MDC are associated with a particular medical 
specialty.

We consider hospitals that accept all types of insured and uninsured 
individuals. Patients are differentiated by diagnoses only, and we assume 
that each patient has only one diagnosis, or only one major diagnosis is 
in consideration.

Possibilities of consolidating services lead to a trade-off between 
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Abstract
We consider the problem of partitioning clinical services in hospitals into groups with the goal of efficiently allocating 

existing inpatient beds. At the strategic level, there are two major possibilities: pooling versus focusing. Pooling the bed 
capacity allows one to achieve an overall high occupancy level for a fixed number of beds. On the other hand, focusing 
by dividing the capacity into groups with restricted access may offer increased efficiency and better resource utilization. 
We first derive a 2-stage approach to address the 3-fold problem: 1) how many groups of services to form; 2) how many 
beds to allocate to each group; and 3) how to partition services among the groups. Specifically, Stage 1 uses cluster 
analysis utilizing the similarity principle for possible advantages of economies of scale. Stage 2 then incorporates utility/
benefit functions to optimize the partitions and allocation of beds. To contrast the results, we combine the two stages into 
a single mixed integer nonlinear program. Three full-scale examples demonstrate the flexibility and diverse application 
of our framework with managerial insights for different utility optimization goals and queuing systems. The resulting 
modeling framework is not computationally sensitive to the number of beds, making it more practical for usage by any 
hospitals.
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to a limited number. These candidate solutions along with “complete 
pooling” and “focusing” are input into Stage 2, where utility goals are 
incorporated. Utility here represents the state of being useful, profitable 
or beneficial. The overall number of beds is known, and an underlying 
queueing model thus defines the structure of the optimization problems 
in Stage 2.

The clustering approach allows multiple criteria of similarity in 
Stage 1. The Stage 1 heuristic has both advantages and drawbacks: it 
is simple and fast, but it does not observe an objective function (of 
Stage 2) and may cut too deep into the feasible region. So, it may be 
weaker than other heuristics that utilize information about the objective 
function and constraints of particular optimization problems directly. 
Stages 1 and 2 are bundled and allow users to compare results with other 
heuristics alternatives. The drawback can be compensated by the fact 
that the optimization problems in both stages are open to adding any 
customized constraints and group-candidate solutions.

In section II, we present the 2-stage and the combined approaches. 
Section III illustrates our approaches using three hospital cases. 
Discussions and conclusions are presented in Section IV.

Methodology and Mathematical Models
The 2-stage scheme

In the 2-stage approach, we solve the bed management problem 
based on i) cluster analysis and ii) solution to a sequence of queueing-
model-based mixed integer nonlinear programs (MINLP). Specifically, 
Stage 1 clusters the services based on similarities and determines a 
potential number of groups with a list of partition-candidates of the 
services. Stage 2 optimizes the actual bed allocation over the feasible 
set returned by Stage 1 guided by some desirable objective function(s).

Stage 1: Clustering specialties to establish a limited number of 
group-service candidates Let n ne the number of entities (services) each 
represented by a numeric vector, 𝑞𝑖, i=1, …, n. Given m groups (m<n), 
𝑆𝑗, j=1, …, m, we determine the group membership of each service by 
minimizing the within-group sum of squares, f, where

2

1 j

m

i j
j i s

f q c
= ∈

= −∑∑
Here 𝑐𝑐𝑗𝑗 is the center of 𝑆𝑆𝑗𝑗, i.e. 
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j ij i s q

j
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partitioning the entities, we adopt the “condition with a leading entity.” 
That is, in an optimal solution one entity, the leader of the group, should 
have the distance with any out-of-group entity no less than the distance 
between the leader and any entity inside its group. This problem is first 
investigated by Rao [10]. Although the condition is weak, it offers an 
attractive 0-1 integer programming formulation. Let binary variable 
𝑦𝑦𝑝𝑝=1 if group p is formed, 0 otherwise. We establish a restricted set 
partition problem:

{ }{ }min 1,1 , 0,1T Tz h y AY Y m y= = ≤ ∈                         (1)

Where 𝐴 is an n by m 0-1 incidence matrix, 𝑎𝑎𝑖𝑖𝑖 =1 means 
entity i belongs to group j, and 1 is a column vector of all ones with 
appropriate dimensions. For convenience, we assume the distances are 
distinct. This allows us to arrange all distances with any entity i as a 
leader in an increasing order. Thus, for each leading entity, there are n-1 
possible groups, not counting the group of all entities. Because there 
are n entities and each of them can be a candidate for leadership, thus 
there are at most (𝑛-1)+1 groups. In this case, the matrix A has at most 
(𝑛-1)+1columns. The problem size can further be reduced by deleting 
identical groups.

pooling and focusing. Pooling decisions assume fair unrestricted access 
for patients and allow one to gain from the economy of scale [6], while 
focusing (“specialist systems”) may provide convenient restrictions for 
hospitals, effect of experience for personnel, and increased efficiency of 
care as shown in some empirical studies [7,8].

The problem of care unit consolidation and partitioning has tight 
connections with capacity sizing. Best et al. (2015), in their study 
of University of Chicago Medical Center and started from a known 
overall number of medical / surgical beds and clinical services, raised 
three specific questions simultaneously in a single complex decision: 1) 
how many groups of services to form, 2) how many beds to allocate 
to each group, and 3) how to partition services among the groups. 
Its combinatorial nature makes solutions to realistic instances with 
hundreds or thousands of beds computationally prohibitive. Best 
provided a [9] solution approach by restricting the feasible region, 
and solved a 300-bed problem using dynamic programming. Their 
model employs a Markovian queueing system for arrival, service, and 
abandonment, and requires exogenous parameters for financial utilities 
and service time. The essential point of their work is to generate financial 
advantages by grouping clinical services while restricting beds for “not 
very profitable” services.

In this paper, we propose a 2-stage framework for solving this three-
fold inpatient bed capacity management problem. In this approach, we 
first restrict the feasible region by using similarity/dissimilarity principle 
from cluster analysis. This is followed by optimization of the partitions 
and allocation of beds. We contrast the 2-stage approach with a direct 
approach where the group partition process is integrated within the 
optimization problem. In the direct theme, the optimization searches 
through the entire feasible region and thus will be computationally 
more expansive.

Starting with n clinical services, we look for m possible groups, 
where minimal m=1 means “pooling” (centralized, i.e. no separate 
groups), and maximal m=n means totally focused “specialist” system 
(completely decentralized). It is easy to observe that the number of 
possible group configurations equals the number of partitions of the set 
with n elements. This is given as the Bell number 𝐵𝑛, 

Where ( )1
0

n
n

n m m
m

B B+
=

= ∑
Hence, the number of potential partitions is exponential.

The number of all possible feasible solutions in the case of 300 
beds exceeds 1030. Using simulation-based optimization approach in 
[9], “it would take about six months” just to evaluate all groups (more 
than 50,000) for a fixed instance in their heuristic. The problem is 
computationally intractable.

In this study, we provide a holistic, flexible, and fast computational 
framework to tackle this problem. We apply a decomposition scheme 
to manage the “curse of dimensionality” in the number of beds using 
the fact that the number of clinical services (and possible groups) is 
relatively small. The resulting system is not computationally sensitive to 
the number of beds, making it more practical for usage by any type of 
hospitals. All possible outcomes (pooling, focusing, and partial pooling) 
can be obtained as solutions. Choosing and checking various objective 
functions over the same restricted feasible set give flexibility and insight 
for decision making. Different queueing sub models can be used. 
Specifically, in Stage 1, n-2 linear optimization problems of moderate 
size are solved to obtain candidates for service partitioning (i.e. partial 
pooling modes). Using this approach, the feasibility region is reduced 



Citation: Lee EK, Wang Z, Shapoval A (2018) Strategies for Inpatient Bed Management. J Health Med Informat 9: 308. doi: 10.4172/2157-7420.1000308

Page 3 of 10

J Health Med Inform, an open access journal
ISSN: 2157-7420 Volume 9 • Issue 2 • 1000308

The vector h defines the within-group sum of squares. In 
particular, ℎ𝑝𝑝 denotes the within-group sum of squares of group 
p. Assume that group p contains the entities i through j, then 

2

1
( ) ,

1

j

kj
j k i

p i k ij ij
k

q
h h q q withq

j i
=

=

= = − =
− +

∑
∑  (the group mean), 

and 𝑞𝑞𝑖𝑖 the numerical characteristics of entity 𝑖. Note that ℎ𝑖𝑖𝑖𝑖=0. 
With our approach, there are at most (𝑛-1)/2 nonzero values in h. The 

constraint 1T y m≤  ensures that there are at most m total number of 
groups. Our formulation allows us to manually assign some variables 
to 0 (without getting infeasibility), if they are not desirable to be in the 
solutions.

Solving the sequence of restricted set partition problems for 
m=2,…, n-1 establishes a limited number of candidates for the number 
of groups along with partition-candidates of services.

Stage 1 returns sets Sm of candidate assignment vectors Si of 

specialties: { }1 2, ,...,m m m m
mS S S S= , with ,1

m
i i mU S S m n= ≤ ≤

. The superscript denotes the number of groups, and the subscript is 
the index of groups. Two possible solutions are trivial: “the complete 

pooling” mode { }1 1
1 1 1, (1, 2,... )S S whereS n= = , and “the complete 

focused” mode { }1 2, ,...,n n n n
nS S S S= , where each assignment vector 

contains exactly one specialty, n
iS i= , 𝑖=1,2,…𝑛𝑛. For each 𝑚𝑚=2,3,…

𝑛𝑛-1. Only one instance-candidate set 𝑆𝑆𝑚𝑚with fixed entries is kept. 

Consider the example with three specialties: for 𝑚=1, { }11 1S S= , where 
𝑆1=(cardiology, gynaecology, neurology) as one group; for m=3,𝑆3=

{ }3 3 3
1 2 3, ,S S S , where 𝑆1

3= cardiology, 𝑆2
3=gynaecology, 𝑆3

3=neurology; 

for m=2, { }2 2 2
1 2,S S S= is a solution of the restricted set partition 

problem, say 𝑆1
2= (cardiology, gynaecology), 𝑆2

2= neurology, which 
outperforms the other configurations consisting of two groups and is 
kept for Stage 2.

Using the ‘leading entity’ approach, the feasible region is greatly 
restricted. Thus the resulting set partitioning problem in Stage 1 is 
relatively small and can be easily solved to optimality. We contrast the 
leading entity approach with k-means++ clustering by running it on 
the data set 100 times and select the best results [11].

Stage 2: Optimizing bed allocation and finalizing partitioning 
services into groups.

Recall n denote the number of clinical services. In Stage 2, the 
main problem initially is transformed to a sequence of n optimization 
problems with respect to the fixed sets S1, S2, …, Sn to find the optimal 
objective function values z1, z2, …zn. Let N denote the number of 
groups (i.e. the fixed value of m in Stage 1). Then each of the n problems 
contains constraints from the underlying queueing system along 

with the bed allocation constraints
1

, 1, 1
N

i i
i

c C c i
=

= ≥ =∑ , 2,…N, 

where C denotes the total number of beds. The best optimal values 
zN* among these n problems gives the optimal bed allocation vector

( )*
1 2, ,... Nc c c c= , and solves the main problem with optimal values 

m=N*, c*, and SN*. Thus N* answers how many groups of services to 

form, c* reports the number of beds allocated to each group, and SN* 
shows the partition of services.

Thus, Stage 2 i) manages the sub problem of bed allocation by taking 
into account the utility goals; and ii) finalizes partitioning services into 
groups. A sequence of mixed integer nonlinear programs (MINLP) 
is involved to optimize a particular objective function. Queueing sub 
models are essential parts of the Stage 2 and they are defined by the 
problem structure.

An illustrative theoretical-computational framework for 
stage 2

Let 𝜆 be the arrival rate, 𝜏 be the mean service time, 1
c
λτρ = <

be the utilization and 𝑣2 be the service time squared coefficient of 
variation (SCV).

Assume that a hospital with C beds has the information about 
its patients for all clinical/surgical services i=1, …, n in the form of 

parameters 𝜆𝑖, 𝜏𝑖 and 𝑣𝑖
2. Let 1

n
i iλ=Λ =∑ . We use M/G/c queue to 

model the patient accommodation process here, i.e. the patient arrival 
flow for the 𝑖𝑡ℎ service is a Poisson process with arrival rate 𝜆𝑖, and the 
service time is an arbitrary distribution with mean 𝜏𝑖 and SCV 𝑣𝑖

2. The 
hospital can operate stably in the pooling mode, i.e. for all services, 

1all i i
total c

λτ
ρ = <∑ .

Suppose that the objective of the hospital is to minimize the total 
waiting time among all patients. For pool 𝑆𝑆𝑘𝑘 (here we omit the 
superscript N for simplification), the expected waiting time among all 
patients in this pool can be written as

2( 1)21
2 1

k

k i

c
kK

K
i S k

W
λ

ρν
ρ

=

∈

=
=

−∑
Where 

ki S i i
k

kc
λτ

ρ ∈= ∑

The results above were first presented in [12]. And group SCV is 
given by the formula in [13]:

( ) ( )( )
( )

2 2
2

2

1
1k k

k

i S i i s i i i
k

i s i i

λ λτ ν
ν

λτ

∈ ∈

∈

+
= −
∑ ∑

∑
.

Suppose that the group number is N, then the total waiting time 

among all groups could be written as: 1

1

N
k k K

N
k k

W
W

λ
λ

=

=

= ∑
∑

= 1
N
k k kWλ=

Λ
∑

where
kk i S iλ λ∈=∑ .

We can compare the optimal objective function values of these 
sequences of nonlinear mixed integer programming instances. 
In particular, the MINLP for Stage 2 can be formulated as: 

( )( )
( )

2 12

1

11min
2 1

kc
N k k

k k

ν ρ

ρ

+

=

+

Λ −∑
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Section III illustrates the 2-stage approach in detail for three 
examples.

The Direct approach
The 2-stage scheme attempts to reduce the computational effort by 

restricting the feasible space. We will measure its solution quality by 
contrasting it to the one obtained via a direct mixed integer nonlinear 
programming approach.

Consider the M/G/c model, let 𝑥𝑖j=1when service j is assigned to 
group i, and 0 otherwise, 𝑖=1,…,,=1,…,𝑛.

Then the group offered load 𝐴𝐴𝑖𝑖 for group 𝑆𝑆𝑖𝑖 is given by 

1
n

i j ijj
A a x−=∑ . And the group SCV 𝑉𝑖

2 is: 

( ) ( )( )
( )

2 2
1 12

2

1n n
j j ij j j j j ij

i
i

x x

a

λ λ τ ν
ν

= = +
=
∑ ∑

The MINLP for the M/G/c model can be formulated as: 

( ) ( )

( )

2 12

1

11min
2 1

icN
i i

i i

V ρ

ρ

+

−

+

Λ −∑ 1

Subject to: 1 1             1,...,n
j ijx i N= ≥ ∀ =∑

1 1           1,...,N
i ijx i n= = ∀ =∑

1           1,...,n
i j j ijA a x i N== ∀ =∑    (5)

( ) ( )( )
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2 2
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1
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n n
j j ij j j j j ij

i
i

x x
V i N

A

λ λ τ ν= = +
= −∀ =
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𝜌𝜌𝑖𝑖𝑐𝑐𝑖𝑖=𝐴𝐴𝑖𝑖 ∀𝑖𝑖=1,…,

              1,...,i i ic A i Nρ = ∀ =

0 1             1,...,i i Nρ≤ ≤ ∀ =
The first constraint ensures that every group has at least one 

service. The second constraint assigns each service to exactly one 
group. Compared to the 2-stage scheme, this formulation adds 𝑁𝑁 0/1 
decision variables 𝑥𝑥𝑖𝑖𝑖 and 2𝑁𝑁 derived variables 𝐴𝐴𝑖𝑖 and 𝑉𝑉𝑖𝑖2. By 
nature, MINLP is difficult to solve. This is harder than the optimization 
in Stage 2 since it searchers over a much larger feasible region. From 
the examples below, we can see that in practice due to the limitation 
of non-convex optimization solution tools, this formulation may not 
generate better solutions than the 2-stage scheme.

For M/G/c/c model, the MINLP formulation is similar:

Min 𝐵𝐵𝑤𝑤

subject to 𝐵𝐵𝑖𝑖≤𝐵𝐵𝑤𝑤 𝑖𝑖=1,…,𝑁𝑁

Σ𝑥𝑥𝑖𝑖𝑖 ≥1𝑛𝑛𝑗𝑗=1 ∀𝑖𝑖=1,..,

1 1          1,...,N
i ijx j N= = ∀ =∑

1 1          1,...,N
i ijx j n= = ∀ =∑

1            1,...,n
i j j ijA a x i N== ∀ =∑

subject to 1  k=1,...,NKi S i i

kc
λτ∈ ≤ −∈ ∀∑                                 (2)

1

N

k
k

c C
=

−∑
where ε is a very small positive number, e.g., e-6. The decision 

variables in this formulation are 𝑐𝑐𝑘𝑘. All the parameters can be 
calculated by the equations above after Stage 1 is completed. Suppose 
that we have n clinical services in a hospital, then we need to solve (2) 
for N=1, …, n to determine the optimal solutions.

The idea here also applies to other queueing models. Suppose that 
patients would leave the hospital (instead of joining a queue) if they 
find that all the beds are occupied. These patients are called ‘blocked’ 
patients. An M/G/c/c queue could also be applied here.

Suppose the hospital wants to minimize the maximal blocking 
probability among all groups. Let 𝐵𝐵𝑘𝑘 denote the blocking 
probability for group 𝑆𝑆𝑘𝑘, and offered load 𝑎𝑘=𝜆𝑘𝜏𝑘. We use keep the 
same notation as in the M/G/c queue case. The group offered load can 
be calculated as: 

k

k k

i S i i
k i I i

i S i Ski S i

a
λτ

λ λ τ
λ

∈

∈ ∈∈

= ∗ =∑∑ ∑∑
Using the continuous Markov chain, we can see the blocking 

probability is given by the Erlang-B formula:

 
( )

( )0

/ !
/ !

k

k

c
k k

k ic
i k

a C
B

a i=

=
∑

.                        		               (3)

To facilitate the solution process, this high-degree polynomial 
formula can be approximated by [14]:

( )
2

2 4
           k=1,..., N

2 2
k k k k k k

k
k k

a c a c a
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a
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ρ
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=
−

.

The Stage 2 formulation for M/G/c/c queue is given by:

 to              k=1,...,Nw

k

BMin
subject B wB≤

( )
2

2 4
           k=1,..., N

2 2
k k k k k k

k
k k

a c a c a
B

a
ρ

ρ
− − + − +

=
−

 (4)

1

N
kk

c C
=

=∑
( )1k k ka B C− ≤

0 1kB≤ ≤

, , , 1,...,k w kC Z B B R k N+∈ ∈ ∀ =
Where 𝐵𝐵𝑤𝑤 represents the maximal blocking probability among 

all groups. Note that the stability constraint 1i i i

kc
λτ∈ <∑  from (2) 

is replaced by ( )1k k ka B c− ≤  since M/G/c/c queue has finite state 
space and thus does not have stability requirement; but normally the 
hospitals would prefer the unblocked offered load to be lower than the 
bed capacity.
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( )22 4
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B i N
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( )1            1,...,i i iA B c i N− ≤ ∀ =

i i ic Aρ =

1
N
i ic C− =∑

0 1,              1,...,iB i N≤ ≤ ∀ =

, , , , , 1,...,k w i i ic Z B B A R i Nρ+∈ ∈ ∀ =
Application of our Framework

We use three real-world examples to demonstrate the two modeling 
frameworks. For each approach, we describe the necessary ingredients 
and steps to setup the model and the solution approach. Specifically, for 
the 2-stage framework, this includes 1) choosing the similarity criteria 
and solving the restricted set partition sub problems; 2) formulating 
the utility goals in terms of service quality or finance, and 3) solving the 
MINLPs based on the queuing sub models. For the direct approach, we 
show the solution of the MINLP.

All the MINLP are solved using LINGO 17.0 solver, 104 multi 
start are applied to each program for better performance. The solver is 
based on generalized reduced gradient algorithm for each start point. 
Successive linear programming is also used where applicable.

Example 1. An Urban U.S. hospital

Consider an urban hospital with 16 departments/services. Figure 1 

shows the normalized bed demand i i

i ialli

λτ
λτ∑  (the columns) and daily 

utility (i.e., the normalized return/benefits 

i

i

i
alli

i

u

u
τ

τ∑
 for the hospital 

from serving these patients for service i (the curve with markers) 
for the 16 services. Here, ui is the expected utility gain for service i. 
qualitatively; this example is similar to the example in [9]. It shows 
a standard misbalance between popular services (with high demand, 
e.g. general medicine) versus the most profitable ones (e.g. different 
types of surgery). This figure describes situations commonly faced by 
many hospitals in the United States. Intuitively, it may be advantageous 

to group services with large demand and low utility so as to limit the 
number of beds allocated to them. The respective utilization constraints 
(i.e. ρ <1 in M/G/c queueing) have to be included explicitly.

In the 2-stage framework, we consider these two characteristics 
(normalized bed demand and daily utility) and test the similarity in the 
two-dimensional space.

Applying these data to the restricted set partition problems (1), we 
first note that matrix A has 140 columns (<the discussed upper bound 
n(n-1)+1=241). Moreover, the resulting linear relaxation returns an 
integer optimal solution within seconds (Table 1).

Solving the sequence of restricted set partition problems with 
increasing m, we obtain all candidate groups for each m.

We also perform K-means++ clustering for each m, observe that all 
clustering returns the same results. This implies that it is very likely that 
the local optimum is the global optimum. The clustering results for all 
m =1, 2, 3,…, 15, 16 are the same results as those from the restricted set 
partition problem approach.

We use these 16 candidates in Stage 2. In this example, we use 
formulation (2), i.e. the queueing system of M/G/c queue. The total 
number of beds is 504 [9].

Table 2 shows the input parameters for our model. Figure 2 shows 
the results. The SCV for each service is assumed to be 1. Note that the 
curve is monotonically increasing, meaning that the partition with the 
shortest expected waiting time across all services would be pooling all 
services together.

Let { } ( )1,2... .N card kΩ⊆ Ω = . Tekin et al. proposed that 
with some strict assumptions, a sufficient condition for pooling to be 

beneficial is when 3 /i ji j
k T T

∈Ω ∈Ω
≥∑ ∑ , where 𝑇𝑇𝑖𝑖 is the mean 

service time for each clinical service [13]. From this we conject that the 
minimal distances between each pair of offered load (𝑎𝑎𝑘𝑘) need to 
be large enough to make pooling unfavourable. Otherwise, it’s always 
beneficial to pool services.

Our initial analysis focuses on similarity of two criteria. These 
criteria can be weighed to reflect their relative importance. Dimension 
reduction occurs when the weight is set to zero. For example, if nominal 

Figure 1: Normalized bed-demand and utility in a U.S. hospital.

m Sm

1 all 16 pooled: (1,2,…16)
2 (7, 9, 14, 15), (1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 16)
3 (7, 9), (14, 15), (1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 16)
4 (7, 9), (14, 15), (1, 2, 3, 4, 5), (6, 8, 10, 11, 12, 13, 16)
5 (7, 9), (14), (15), (1, 2, 3, 4, 5), (6, 8, 10, 11, 12, 13, 16)
6 (7, 9), (14), (15), (1, 2, 3, 4, 5), (6, 8, 10, 12), (11, 13, 16)
7 (7, 9), (14), (15), (1, 2), (3, 4, 5), (6, 8, 10, 12), (11, 13, 16)
8 (7, 9), (14), (15), (1, 2), (3, 4, 5), (6), (8, 10, 12), (11, 13, 16)
9 (7, 9), (14), (15), (1), (2), (3, 4, 5), (6), (8, 10, 12), (11, 13, 16)

10 (7, 9), (14), (15), (1), (2), (3, 4, 5), (6), (8, 10, 12), (11, 13), (16)
11 (7, 9), (14), (15), (1), (2), (4), (3, 5), (6), (8, 10, 12), (11, 13), (16)
12 (7, 9), (14), (15), (1), (2), (4), (3, 5), (6), (8, 10), (12), (11, 13), (16)
13 (7), (9), (14), (15), (1), (2), (4), (3, 5), (6), (8, 10), (12), (11, 13), (16)
14 (7), (9), (14), (15), (1), (2), (4), (3), (5), (6), (8, 10), (12), (11, 13), (16)
15 (7), (9), (14), (15), (1), (2), (4), (3), (5), (6), (8), (10), (12), (11, 13), (16)
16 all 16 specialized

Table 1: Partitions obtained in Stage 1 for example 1.
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daily utility is eliminated from the model, missing opportunities may 
occur because some services can have simultaneously high values 
in both demand and utility criteria, for example, due to excellent 
reputation of the specialists or local monopolistic status of the hospital 
in particular services, but are grouped with lower-paid entities. On 
the other hand, if only nominal daily utility is selected, the “price of 
instability” (i.e. difficulty with getting ρ<1 for groups) may create extra 
challenges. Intuitively, “relaxation of stability” creates burden for low-
profitable services, but helps in protecting the beds for high-profitable 
ones.

For the direct approach, we formulate it using the MINLP 
formulation (5). However, LINGO failed to solve it because of 
instability in the model. Notice that the objective function in (5) has 
the variables on both base and exponent, which makes the large-scale 
problem relatively difficult to solve.

Example 2. A hospital in europe

This example is based on the case study in de Bruin et al. [15]. 
They use the Erlang loss queueing model M/G/c/c to determine the 
number of required beds for wards (when the blocking probability is 
pre-specified) for a typical situation “in most Dutch hospitals where 
ward sizes are relatively small and dispersed and where the 85% 
target occupancy rate is considered a golden standard.” It follows 
from the Erlang loss formula that the percentage of refused (blocked) 

admissions given the fixed occupancy rate is declining monotonically 
and asymptotically to zero as a function of the number of beds. On the 
other hand, the “mirror” picture of the occupancy rate monotonically 
growing close to 100% as a function of the number of beds can be 
observed (given the fixed refused admissions percentage). Proper use 
of economies of scale in merging departments may help with getting an 
acceptable balance. De Bruin explored the potential benefit of merging 
three special departments. We supplement their analysis by considering 
15 stationary departments (after combining Internal medicine units 1 
and 2, as well as Paediatric units 1 and 2 in their settings). We use the 
Gini-coefficient for the length of stay (which is the same as the service 
time in de Bruin’s paper) as the criterion of similarity (Figure 3). This 
coefficient is known in economics and other sciences as a measure of 
inequality in income and wealth distribution and has values between 
0 and 1. Low or high Gini-coefficient in our content indicates that 
variability in LOS is low or high respectively.

In Stage 1, matrix A of the restricted set partition problem has 
106 columns ( )( )1 1 211n n< − + = . Solving the sequence of such 
problems (Table 3) gives 15 group-candidates: all 15 pooled, [(1,2,4,5
,6,7,8,9,10,12,13,14,15),(3,11)],… [(9,13),1,2,3,4,5,6,7,8,10,11,12,14,15]
, all 15 focused.

The candidate partitions obtained from K-mean++ algorithm is 
given below (with trivial partitions excluded):

When m=14, 3.714 17k means IPf f e− − = − − , where f is the 
within-group sum of squares. This indicates that K-means++ returns 
better candidate partition than the Figure 4 restricted set partition 

Service index λ: the arrival rate τ: the mean service time 
1 1.7 9.5
2 1.02 5
3 0.82 4.43
4 3.3 4.3
5 1.69 4
6 8.95 3.05
7 9.15 6.1
8 2.4 5.6
9 6.4 7.5
10 1.65 8.5
11 2.29 2.5
12 4.19 5
13 4.78 1.6
14 23.47 4.5
15 14.9 5.2
16 0.75 6.5

Table 2: Stage 2 parameters for example 1.

Figure 2: Expected waiting time among all patients in example 1.

Figure 3: Gini-coefficients for 15 departments (derived from data in de Bruin 
et al.).

m Sm

2 (3,11), (1,2,4,5,6,7,8,9,10,12,13,14,15)
3 (3,11), (1,2,5,6,710,12,15), (4,8,9,13,14)
4 (3), (11), (1,2,5,6,710,12,15), (4,8,9,13,14)
5 (3), (11), (1,2,6,710,12,15), (5), (4,8,9,13,14)
6 (3), (11), (1,12), (2,6,7,10,15), (5), (4,8,9,13,14)
7 (3), (11), (1,12), (2,6,7,10,15), (5), (4), (8,9,13,14)
8 (3), (11), (1,12), (2,15), (6,7,10), (5), (4), (8,9,13,14)
9 (3), (11), (1,12), (2,15), (6,7,10), (5), (4), (8,9,13), (14)
10 (3), (11), (1,12), (2,15), (6,7), (10), (5), (4), (8,9,13), (14)
11 (3), (11), (1), (12), (2,15), (6,7), (10), (5), (4), (8,9,13), (14)
12 (3), (11), (1), (12), (2,15), (6,7), (10), (5), (4), (8), (9,13), (14)
13 (3), (11), (1), (12), (2,15), (6), (7), (10), (5), (4), (8), (9,13), (14)
14 (3), (11), (1), (12), (2,15), (6), (7), (10), (5), (4), (8), (9), (13), (14)

Table 3: Partitions obtained in Stage 1 for example 2.
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problem. In Stage 2, we use the results returned by the K-means++ 
method.

In Stage 2, we minimize the worst (highest) blocking probability 
using MINLP (4). Table 4 shows the optimal partition for each m 
returned by Stage 1; and Table 5 shows the parameters we use for 
Stage 2. The total number of beds is set at 150, which is less than the 
total offered load because the blocking probability proposed by Harel 
[8] performed poorly when the probability is near 0 or 1. If we set 
too many or too few beds, the program might not reflect the actual 
probability accurately.

The optimal configuration is pooling all the departments. This 
might also due to the close distance between 𝑎𝑎𝑘𝑘 as we discussed in 
example 1. We observe that the direct approach returns lower maximal 
blocking probabilities than the 2-stage approach for every group 
numbers. This example illustrates that when the number of clinical 
services is relatively small, direct approach can return better solution 
(in reasonable computational time) since it searches over a larger 
feasible region.

Example 3. A Hospital in Asia

This example is based on the case study in Li et al. [16]. Li et al. 
proposed a goal programming approach to analyze the trade-off 
between the number of beds required to achieve a targeted probability 
of admissions and the number of beds needed to optimize daily profits. 
We use this example to show how to extend our framework to more 
general cases. In our analysis, we use its setting of 11 departments and 
apply the M/G/c/c queueing model. The objective is to maximize the 
total profits of the hospital.

Li et al. [16] calculated the profits as: 

( ) ( )( )1 1r B B C Bρ λτ πλ η λτ= − − − − −
where 𝑝=the average profit per day; 𝑟= revenue per day generated 

from each admitted patient; 𝜋=penalty cost for each patient being 
turned away; 𝜂=the holding cost per day per idle bed; and 𝑐,𝜆,𝜏,𝐵 follow 
the same meanings as an Example 1. These variables can be applied to 
both single service and groups.

For the 2-stage framework, we pick two similarity criteria, as 
reflected in Figure 5: normalized targeted number of beds with respect 
to 95% of patient admission (columns), and normalized targeted 
average profit per day for each department (Tables 1 and 2 respectively 
in [16]).

In Stage 1, matrix A of the restricted set partition problem has 56 
columns. Solving the sequence of problems yields 11 group-candidates. 
Table 6 shows the best partitions obtained by solving the restricted set 
partitioning problem (1) versus the K-mean++ approach.

The only difference is when m=5, with 1.301 18K means ipf f e− − = −
. This shows that the restricted set-partitioning approach returns s 
slightly better solution. We use these partitions in Stage 2.

Before we establish the Stage 2 problem, it is necessary to calculate 
the group parameters for r, π and 𝜂𝜂. We use R,Π,Η to represent 
respectively these parameters for the group. By definition, the revenue 
generated by each admitted patient per day is solely determined by the 
services that the patient receives, and it does not relate to the length of 
stay nor other variables such as the number of beds and the blocking 
probability, etc. Thus, the revenue for group Si, 𝑅𝑅𝑖𝑖, can be estimated 

as i

i

j jj S
i

jj S

R
λ γ

λ
∈

∈

=
∑
∑

We employ similar logic to calculate Π and Η as the weighted 
average. We also introduce a way to calculate group offered load 𝐴𝐴𝑖𝑖 
and group arrival rate 𝛬𝛬𝑖𝑖, which is the sum of service arrival rates in 
the group.

In Stage 2, we maximize the average profit per day. We modify 
formulation (4) as follows:

m Sm

2 (1), (2-15)
3 (9), (7,11), (others)
4 (3,11,12), (1,4,5,6,9,10,14), (7,13), (2,8,15)
5 (10), (6,8,13), (1,14), (9), (2,3,4,5,7,11,12,15)
6 (7,11,15), (2,3,9), (4,5,8,13), (1,6,12), (14), (10)
7 (5,8), (13), (10), (6), (15), (1,3,4,9,14), (2,7,11,12)
8 (13), (15), (11,12), (1,2,4,5,6,9,14), (3), (7), (10), (8)
9 (4), (3), (15), (2,9), (13), (1,5,6,12,14), (10,11), (8), (7)
10 (7), (8,13), (2,9), (15), (3), (12), (4,5),(10),(11), (1,6,14)
11 (2), (3), (10), (7), (15), (5,6,14), (1,9), (11), (4), (8,13), (12)
12 (6,14), (8,13), (4,5), others separated
13 (4,10), (6,14), others separated
14 (4,6), others separated

Table 4: Partitions obtained using the direct approach.

Service index Λ τ 
     
1 5.62 4.347
2 6.84 3.172
3 7.57 2.763
4 3.55 6.448
5 7.07 5.468096
6 8.52 3.766035
7 3.8 4.362
8 3.32 4.633
9 4.26 5.256

10 3.29 5.533
11 11.14 1.501
12 3.86 4.527
13 5.18 1.583
14 3.97 6.833
15 3.19 6.487

Table 5: Stage 2 Parameters for example 2.

Figure 4: Maximal blocking probability for each group in example 2.
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Here, 𝑏𝑏􀷨 is the value for the maximal blocking probability for any 
group set by the hospital. 𝑝𝑝􀷤𝑖𝑖 is the minimal profits for each group, 
which is assumed to be the sum of original profits of each service in 
the group, since it is undesirable to the hospital if the pooled services 
are less profitable than before. We choose 𝑏𝑏􀷨to be 0.4 and the total 
number of beds C to be 200. Other parameters are shown in Table 7.

For the direct approach, we establish the following MINLP: 
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Figure 5: Normalized targeted bed distribution and average profit per day 
(derived from the table data in Li et al.).

m Sm obtained by solving (1) Sm obtained by K-mean++ 
2 (1,2,3,4,5,6,7), (8,9,10,11) (1,2,3,4,5,6,7), (8,9,10,11) 
3 (1,2,3,4,5,6), (7), (8,9,10,11) (1,2,3,4,5,6), (7), (8,9,10,11) 
4 (1,2,3,4,5,6), (7), (8), (9,10,11) (1,2,3,4,5,6), (7), (8), (9,10,11) 

  5* (1,2,3,4,5),6,7,8,(9,10,11) (1,2), (3,4,5,6), (7), (8), (9,10,11) 
6 (1,2), (3,4,5), (6), (7), (8), (9,10,11) (1,2), (3,4,5), (6), (7), (8), (9,10,11) 

7 (1,2), (3,4), (5), (6), (7), (8), 
(9,10,11) (1,2), (3,4), (5), (6), (7), (8), (9,10,11) 

8 (1,2), (3,4), (5), (6), (7), (8), (9,11), 
(10) (1,2), (3,4), (5), (6), (7), (8), (9,11), (10) 

9 (1,2), (3,4), (5), (6), (7), (8), (9), 
(10), (11) 

(1,2), (3,4), (5), (6), (7), (8), (9), (10), 
(11) 

10 (1,2), (3), (4), (5), (6), (7), (8), (9), 
(10), (11) 

(1,2), (3), (4), (5), (6), (7), (8), (9), (10), 
(11) 

Table 6: Partitions returned by Stage 1 via the restricted set partitioning problem 
(1) versus the K-means++ approach for example 3.

Service index R π Η 
1 109.08 78.97436 11.217
2 110 82.05128 19
3 106.9 62.85714 15.856
4 105.896 62.4 9.7094
5 150.42 78.04878 15.61
6 72.52 47.33728 8.35
7 90.75086 108.3187 8.86171
8 56.4 81.02564 21.2
9 76.98143 3.737468 7.63253

10 81.16582 82.93014 11.64
11 80.6651 50 6.41363

Service index λ τ Original profits 
       
1 9.75 2 932.4118
2 9.75 2 858.4205
3 12.25 2 1108.404
4 12.5 2 1151.723
5 10.25 2 1364.731
6 16.9 2 1076.631
7 20 2.15 1155.748
8 9.75 2 282.8132
9 1.2 5.175 39.5974

10 1.48 2 52.09813
11 1 8.8 44.54212

Table 7: Stage 2 parameters for example 3.
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Figure 6 shows that pooling all services offer the optimal partition. 
This corresponds to the results in example 2 that lower maximal blocking 
probability implies higher profits. In this example, the direct approach 
does not perform as well as the 2-stage approaches, which counters 
the theory the solution space of the direct approach contains that of 
the 2-stage. The inferior performance is resulted from the limitation of 
the commercial solver in tackling these highly nonlinear mixed integer 
programming instances. In practice, the resources planner should 
apply both approaches to obtain the best possible results.

Each of these examples has a specific illustrative purpose. They 
demonstrate how diverse the modeling ingredients and the outcomes 
can be.

Discussions and Conclusions
The efficient use of hospital beds is critical as financial pressure 

and demand grow. Our 2-stage and direct modeling frameworks offer 
broad opportunities for hospital managers to make strategic decisions 
about this fundamental resource. Using our methodology, hospitals 
of different sizes, missions, and visions can find reasonable practical 
solutions to efficiently manage their bed allocation.

We provide balanced models for the trade-off between pooling 
capacity and focused care while incorporating utility/gain objectives to 
drive the solution process. Flexibility can be suggested by economies 
of scale. The previous practice and experience of managers can suggest 
suitable ingredients for similarity criteria. Existing performance 
metrics (clinical, operational, financial, organizational) offer diverse 
options for applying our framework.

Three structured examples illustrate how different models can be 
embedded within our proposed schema. Widely used financial and 
operational metrics (related to average patient length of stay, admissions, 
discharges, transfers, utilizations of beds, etc.) coupled with achievements 
in queueing theory and optimization help in understanding, modeling, 
and solving problems of vital processes. Hard decisions of compromising 
between fair access for patients and a hospital’s performance (and even 
its financial survival) may receive simple solutions in combining or not 
combining clinical services. Further managerial insights can be obtained 
depending on particular goals.

Although the three-fold inpatient bed capacity management 
problem is intrac in general and has not been solved to global optimality, 
both of our frameworks provide idea to reach local optimality. If there 
are large amount of services or the objective incurs many variables in 
the program, the 2-stage scheme could be applied. Otherwise, direct 
approach could be better since it searches through the entire feasible 
region.

We only briefly touch on some properties of clustering analysis, 
which usually deals with a fixed number of clusters. If the number is 
unknown, two most common ways to proceed are as follow [5]: The 
first is to solve the problem repeatedly for different numbers, then 
“compare some criterion for each cluster”, the value of a gap suggests 
the number of clusters. A second approach is to define a threshold for 
the creation of a new cluster. The leading entry and the K-mean++ 
discussed in Section II combines both of these approaches.

In the M/G/c and M/G/c/c models, pooling appears to be more 
beneficial than any other grouping when the minimal distances 
between the offered loads are far apart. That partly explains the results 
for example 1 and 2.

An observation is that when some groups have significantly more 
entities than the others, the offered load would be farther apart from 
each other because the group offered load is the sum of the individual 
offered load in the group. In this case, the objective function may not 
be strictly monotonic with respect to the number of groups. However, 
in our examples all the curves are monotonic, since the offered loads 
are not too diverse.

The proposed framework is generalizable and can be applied 
and extended to other underlying queueing models (e.g. limited 
space waiting M/G/c/k, rush hour/seasonal, abandonment, or trying 
simulation-based optimization), similarity criteria (e.g. nurse training, 
equipment, location), and goals (in terms of service quality or finance). 
Its flexible structure is open for experiments in designing new hospitals 
and hospital chains. New developments in queueing theory and hospital 
performance metrics and standards can establish new horizons in the 
choice of modeling components for the framework’s practical use.

We caution that our analysis is sensitive to the input data from the 
hospital. This includes estimates for the arrival time, the service time, 
the revenue generated from each admitted patient, the penalty for each 
patient being turned away, and the holding cost per daily idled bed 
for each clinical service. These input will affect the partitions and the 
resulting objective function values. Care should be exercised in data 
collection to ensure that the results obtained are meaningful to the 
clinical service and patient demand patterns.
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