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Insulin resistance post-trauma, -injury and -stress is a common 
clinical manifestation also referred as critical illness diabetes or stress 
diabetes [1,2]. Unfortunately, critical illness diabetes is associated with 
an array of other conditions, such as sepsis and hypermetabolism, 
which together are predictive of a poor prognosis in these patients 
[3]. Recent discoveries on type 2 diabetes etiology have opened the 
path to new possibilities to treat the sequence of events that mediate 
stress diabetes. Here we will discuss these options with a focus on fat 
metabolism and cell organelles.

Insulin is the key hormone responsible for maintaining 
normoglycemia. Initial results have indicated that insulin therapy in 
critically ill and burn patients aiming at maintaining normoglycemia 
led to significant improvements in morbidity and mortality. However, 
following multi-center trials have somewhat contradicted these 
initial observations [1]. The role of insulin therapy in these patients 
remains to be determined but it is evident that insulin resistance and 
hyperglycemia is detrimental and associated with adverse outcomes. 
Three tissues are of critical importance in the development of insulin 
resistance and hyperglycemia: the white adipose tissue, the liver and 
skeletal muscle. The different tissues have different effects but it seems 
that activation of the ER stress response is commonly observed in these 
three tissues [1]. ER stress activates stress kinases such as JNK and IKK, 
which directly inhibit insulin signaling and increase inflammation, 
further exacerbating insulin resistance [4]. Furthermore, ER stress 
also leads to the translocation of SREBPs transcription factors, which 
orchestrate hepatic triglycerides and cholesterol synthesis as well as 
storage [5]. Consequently, the ER stress response is a likely cause of 
stress diabetes, and trauma associated hepatomegaly. 

While the white adipose tissue seems to play a central role in type 2 
diabetes onset, the contribution of this tissue is yet to be better defined 
in stress diabetes. However, the elevated catecholamines concentrations 
in combination with the ER stress, most likely explain the increased 
lipolysis observed in trauma patients. Because the white adipose tissue 
is also a major endocrine organ secreting hormones with demonstrated 
influences on insulin signaling and ER stress, future works should also 
investigate this area and elucidate the role of these so-called adipokines 
in stress diabetes [6]. Whereas in vivo studies indicate that skeletal 
muscle insulin resistance may manifest at a later stage than in adipose 
tissue and in liver, the exact role of the skeletal muscle in stress diabetes 
remains poorly investigated [7]. 

A general consideration about fat and insulin resistance is the 
observation that insulin resistance does not develop as long as fat is 
properly stored where it should be, i.e. in the white adipose tissue. 
In fact, insulin resistance is typically observed when fat is stored in 
ectopic depots such as the liver and the skeletal muscle. A second 
consideration is that the storage of fat under the form of triglycerides 
seems disconnected with insulin resistance, may these depots be 
observed in the white adipose tissue or ectopically in liver and skeletal 
muscle. The rationale explanation for the considerations above is that 
rather than the storage of fat, it is the free fatty acid flux, which causes 

insulin resistance in peripheral tissues [8]. As the function of insulin in 
the adipose tissue is to prevent triglycerides breakdown, i.e. lipolysis, 
the most likely explanation for the elevated flux of fatty acids, is that the 
white adipose tissue has developed insulin resistance in an initial step. 
A similar scenario is likely to occur in trauma, especially considering 
the elevated plasma concentrations of catecholamines, cortisol and 
pro-inflammatory cytokines in these patients, all of which are well 
known to stimulate lipolysis. We hence hypothesize that similarly to 
type 2 Diabetes; stress diabetes may initially arise from dysfunctions 
within the white adipose tissue. On the other hand, liver failure is a 
major cause of mortality following trauma. The adipocentric view 
developed above is suggestive that the excess delivery of fatty acids 
species is responsible for most of the manifestations observed in this 
tissue. Such hypothesis is in fact supported by the observation that 
fatty acids, in particular saturated fatty acids are identified ER stress 
inducers. While the mechanisms involved in the stimulation of ER 
stress by saturated fatty acids are quite unclear so far, the observation 
that enzymes producing unsaturated fatty acids species decrease ER 
stress support the notion that decreased membrane fluidity plays a 
causative role in this cellular response [9]. In support of this concept, 
it is of particular interest to note that saturated free fatty acids are 
known inducers of inflammation and macrophages skewing towards 
a pro-inflammatory (M1) phenotype [4]. This illustrates that elevated 
fatty acids flux could amplify insulin resistance in a feed-forward 
amplification loop via the tissue resident macrophages and contribute 
to the post-traumatic cytokine storm. Several mechanisms have been 
proposed for the stimulation of cytokines by free fatty acids however, 
it is postulated that the production of excessive amount of reactive 
oxygen species (ROS) following saturated fatty acids oxidation, trigger 
the activation of the inflammasome [10]. The inflammasome is an 
interesting multiprotein complex because it leads to the maturation 
of the key cytokines IL1β and IL18. Furthermore, several publications 
report that IL1β production by NLRP3 inflammasome is linked with 
insulin resistance. The exact role of inflammasome in trauma is not 
well documented so far but its activation would suggest that similarly 
to other metabolic diseases, critical illness diabetes is a condition 
involving a sterile type of infection. Sterile infection requires the 
presence of Danger-Associated Molecular Patterns (DAMPs) and free 
fatty acids are established TLR4 DAMPs; however other DAMPs for 
NLRP3 such as ATP released by dead cells may be involved as well 
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[11]. Furthermore, the elevated production of ROS by saturated fatty 
acids result in mitochondrial alterations and, as maximal oxidative 
capacities are reached, the formation of intermediary, diabetogenic 
fatty acid species [8]. In this scenario, strategies aiming at protecting 
mitochondria from oxidative insults should be of particular interest as 
well as stimulating mitochondrial biosynthesis. One interesting mean 
to achieve this goal could be by stimulating autophagy/mitophagy. 
Indeed, mitophagy is a conserved mechanism deployed by the cells 
in order to rid damaged mitochondria. Interestingly, autophagy is 
observed in different tissues following trauma. Furthermore, mitophagy 
is also proposed as an alternative ending to apoptosis following the 
Unfolded Protein Response and defective autophagy is also associated 
with hepatic insulin resistance and ER stress in obesity [12,13]. 

In conclusion, insulin resistance and hyperglycemia are not only 
major contributors to morbidity in diabetic patients but furthermore in 
critically ill, trauma, and burn patients. Identification of novel pathways 
may lead to the development of new perturbations and approaches that 
may improve outcomes of these patients.
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