Reach Us +441414719275
Studies of Solvent Effect of Aquo-Methanol Solvent System on Kinetics and Activation Parameters of Base Catalised Hydrolysis of Ethyl Cinnamate | OMICS International
ISSN: 2161-0398
Journal of Physical Chemistry & Biophysics

Like us on:

Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Studies of Solvent Effect of Aquo-Methanol Solvent System on Kinetics and Activation Parameters of Base Catalised Hydrolysis of Ethyl Cinnamate

Singh AK*

Department of Chemistry, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India

*Corresponding Author:
Santosh Kumar
Singh AK, Department of Chemistry
Teerthanker Mahaveer University
Moradabad, Uttar Pradesh, India
Tel: 07351318000
E-mail: [email protected]

Received Date: July 25, 2017; Accepted Date: August 05, 2017; Published Date: August 11, 2017

Citation: Singh AK (2017) Studies of Solvent Effect of Aquo-Methanol Solvent System on Kinetics and Activation Parameters of Base Catalised Hydrolysis of Ethyl Cinnamate. J Phys Chem Biophys 7: 251. doi: 10.4172/2161-0398.1000251

Copyright: © 2017 Singh AK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Physical Chemistry & Biophysics


The solvent effect of ethanol on the alkali catalyzed solvolysis reaction was studied by carring out of the hydrolysis of ester namely ethyl cinnamate in water-methanol media of varying composition consisting of 30 to 70% of methanol (v/v) at different Temperature ranging from 20°C to 70°C. The Specific rate constant values of the reaction were found to depleted with increasing concentration of methanol in reaction media. Enhancement in ΔG* with simultaneous depletion in ΔH* and ΔS* of the reaction, it has been concluded that reaction is enthalpy stimulating and entropy inhibiting and specific salvation take place in water- methanol media. From the evaluated value of Iso kinetic temperature, which is less than 300 indicates that this reaction in water-methanol media obey Barclay-Butler rule and there is weak but considerable solvent –solute interaction taking place in reaction media.


Solvent effect; Solvent-solute interaction; Iso-kinetic temperature; Specific salvation; Ethyl cinnamate; Base catalyzed; Activation parameter


Study of solvent effect of protic and aprotic solvent on the reaction such as hydrolysis of ester and amide have been carried out by numbers of workers [1-3], but explanation put forward are not quite satisfactory particularly solvolysis of Ethyl Cinamate which is important for medicinal use as well as flavoring agent in cut tobacco. There for kinetic study of the solvent effect on the base catalyzed hydrolysis Ethyl Cennamate in water-methanol media of various compositions are needed to investigate which has not studies so for.


The hydrolysis of ethyl cinnamate has been carried out volumetric in water-methanol having different concentration of solvent (methanol) varying from 30 to 70% (v/v) at five different temperatures ranging from 20°C to 40°C. The reaction was found to follow second order kinetics equation and evaluated value of specific rate constant has tabulated in Table 1 the evaluated thermodynamic activation parameter has been enlisted in Table 2.

30% 40% 50% 60% 70%
15.66 11.22 10.00 8.12 6.45
20.89 16.59 13.48 10.59 8.49
27.54 21.87 16.98 13.64 10.83
38.01 30.19 23.17 18.62 14.62
45.70 36.30 27.86 22.38 17.74

Table 1: Hydrolysis of Ethyl-Cinnamate Specific rate constant [k × 103(dm)3/mole/mint] values of alkali catalyzed in water-methanol media.

% ofMEOH Mole % ∆H* in KJ/Mole 20°C 25°C 30°C 35°C 40°C
∆G* -∆S* ∆G* -∆S* ∆G* -∆S* ∆G* -∆S* ∆G* -∆S*
30% 16.03 53.31 93.64 137.64 94.27 137.44 94.98 137.52 95.60 137.30 96.31 137.38
40% 22.90 52.95 94.20 140.78 94.91 138.42 95.65 140.89 96.31 140.77 97.03 140.83
50% 30.82 52.87 94.68 142.6 95.44 140.30 96.23 143.10 96.96 143.14 97.75 143.38
60% 40.06 51.28 95.16 149.76 95.88 147.24 96.72 149.96 97.43 149.83 98.23 150.00
70% 50.97 50.51 95.64 154.02 96.39 151.44 97.19 154.05 97.96 152.56 98.77 154.18

Table 2: Thermodynamics Activation Parameters of the Reaction in Water- Acetone Media ΔH*and ΔG* in KJ/Mole, ΔS*in J/K/Mole.

Results and Discussion

Solvent effect on rate of reaction

The specific rate constant were calculated with help of second order kinetics and calculated values is inserted in Table 1. From Table 1 it is observed that the values of specific rate constant is decrease with increase of temperature which is quite in agreement with theory of Hughes and Ingold [4] and Singh et al. [5].

Effect of salvation power of reaction media on thermodynamic activation parameters of reaction

It is a great significance to study of solvent effect on thermodynamic activation parameters, such as Enthalpy of activation (ΔH*), Free energy of activation (ΔG*), and Entropy of activation (ΔS*). These parameters are calculated using Wynne-jones [6] and Eyring equation have been recorded in Table 2. To explain the effect of solvent on these activation parameters, the value of these parameters were plotted against mole% at 30°C of methanol which is shown in Figures 1-4. From Figure 2 and the value s of ΔG* recorded in Table 2, obviously indicate that the variation in ΔG* is small and it increases from 94.98 to 97.19 kj/mole at 30°C with change of proportion of methanol from 30% to 70% (v/v) The small but considerable increase in ΔG* and non linear variation in ΔH* and ΔS* curves with the increasing mole% as shown in Figures 1 and 3 are indication of specific salvation taking place in process of activation as already proposed by Saville et al. [7], Tomilla et al. [8], Esemongy [9] and Cleve [10] have also observe the similar increase in ΔG* values. Increase in ΔG* with simultaneous decrease in ΔH* and ΔS* values is only possible when extent (degree) of depletion in ΔS* value is greater than ΔH* values and from this, it may be inferred that alkali catalysed hydrolysis of ethyl cinnamate in water-methanol media act as Entropy inhibitor and Enthalpy stimulator solvent. Such inference have also recently been supported by recent view of Singh [11].


Figure 1: Variation of ΔH* with mole % at 20°C (water-methanol).


Figure 2: Variation of ΔG* with mole % at 30°C (water-methanol)


Figure 3: Variation of ΔS*+200 with mole % at 30°C (water-methanol).


Figure 4: Variation of ΔH* with ΔS* at 30°C (water-methanol) system.

Barclay and butler relationship and solvent-solute interaction

Barclay [12] and Butler relationship between Enthalpy and Entropy of Activation, which is as follows?

δm (ΔH*) = β δm (ΔS*)

This reaction is found to follow the above Barclay and Butler relation where β represent iso kinetic temperature. It is also known as Leffer-Grunwald [13] solvent stabilizer operator. From the value of slope of plot (Figure 3), the value of iso kinetic temperature was evaluated which come to less than 300. (200 aprox), it show that change in structure of reactant or solvent is due to weak interaction between solvent and solute in similar way as reported by Leffer [14] and recently supported by Singh [15].


In this research work, namely hydrolysis of cinnamate ester the specific rate constant show decreasing trend at all specify temperature indicate that transition state is more desolveted than initial state. The increase in the value of and ΔG* with simultaneous decrease in H* and S* for the hydrolysis ethyl cinnamate in water-methanol is enthalpy dominating and enthalpy control. The Values of Iso-kinetic which is less than 300, clearly indicates that there is no appreciable interaction between solvent and solute present in the reaction media, i.e., reaction is not ion-dipole but ion-molecule type.


My special gratitude to my supervisor Prof. RT Singh Veer Kunwar Singh (VKS) University ARA, Bihar, India for his proper guidance and thanks to my friend Dr Ajit, Dr. Parag and Mr. LK Tiwari for his cooperation during preparation of this content.


Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Article Usage

  • Total views: 626
  • [From(publication date):
    October-2017 - Dec 17, 2018]
  • Breakdown by view type
  • HTML page views : 547
  • PDF downloads : 79

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri and Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry


[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version