Study of Growth Rate in Nile Tilapia (*Oreochromis niloticus*)

Mounika Nakkina

Department of Information Technology, Jawaharlal Nehru Technological University, Kakinada, India

Corresponding author: Mounika Nakkina, Department of Information Technology, Jawaharlal Nehru Technological University, Kakinada, India, Tel: 9032436691; E-mail: mounika.inom@gmail.com

Rec date: July 27, 2016; **Acc date:** August 18, 2016; **Pub date:** August 20, 2016

Copyright: © 2016 Nakkina M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

This study shows the effect of wastewater of El-Sail Drain on the strength of *Oreochromis niloticus* gathered from two destinations of River Nile at Aswan Governorate. The physicochemical parameters of water such as pH, electric conductivity, complete break down solids, disintegrated oxygen, organic and concoction oxygen requests; nitrite, nitrate and alkali were resolved. Substantial metals (Cu, Pb, Cd and Ni) fixations in water and fish tissues were recognized. The microbiological, parasitological and neurotic states of fish were likewise researched. Higher estimations of pH, EC, BOD and COD were recognized in site II than from site I. As opposed to DO, nitrite, nitrate and smelling salts which were lower in site II. Substantial metals focuses in water and fish tissues were recognized in higher numbers in water tests from site II. Additionally, the fish got from that site revealed higher bacterial and parasitic contamination. The bioaccumulation of Ni and Pb surpassed the most extreme allowable limit; in any case, Cu and Cd focuses were underneath as far as possible in various tissues. The bioaccumulation variable of Cu demonstrated its most noteworthy worth in liver. The histopathological injuries were more prominent in fish gathered from site II. Thus, expending fish got from the considered locales around El-sail drain disposal point speaks to serious risk on human health.

Keywords: *Oreochromis niloticus*; Parasitic infection; Histopathological lesions

Introduction

Nile tilapia, *Oreochromis niloticus* (*O. niloticus*) is considered as a standout amongst the most critical freshwater species for commercial aquaculture because of its high nutritional qualities, quick development rate and resistance to illnesses [1,2]. However, bacterial ailments episode keeps on happening among *O. niloticus* because of high strengthening, bringing on impressive monetary misfortunes in fish ranches [3-6]. A few methodologies, for example, inoculation and chemotherapy have been done to build fish immunocompetence and prevent aquatic diseases (Figure 1).

With the expansion in escalated aquaculture, interest for more proficient aqua-feed is rising. Sustain involves the principle operating cost in fish generation and the principle protein source has generally been fish feast [7-9]. Fishmeal, the traditional protein source in aquaculture sustains, supports good fish development in light of its protein quality and tastefulness [10,11].

In any case, fish supper is regularly rare and costly, because of restricted accessibility and appeal, which frequently prompts high fish generation costs [12-17]. Supplanting fish supper with less expensive elements of either creature beginning or protein-rich plant sources is an essential need for sustenance research. In perspective of this, oilseed suppers have been found to have impressive financial potential [18-21]. While grain vegetables have not been broadly utilized inside aquaculture feeds, oilseeds and their repercussions habitually constitute a noteworthy wellspring of dietary protein inside aquaculture nourishes for warm water fish species [22-25].

Figure 1: Nile Tilapia *Oreochromis niloticus* (*O. niloticus*).

The cost of fish food covers from 50% to 60% of the aggregate operation expense of aquaculture generation. The capable component for the addition of fish food generation and its cost is the fast development rate of aquaculture industry [26-31]. The restricted source of feed ingredients, for example, fish feast, fish oil and soybean meal are additionally the primary motivation to build the cost of aqua-feed. Besides, an expanding of human interest for supplements got from those ingredients could lessen the commitment of those ingredients towards fulfilling the interest for reasonable aqua-feed production [32-35]. In this way, there is no serious concern on the long term accessibility of these food elements for use in aqua-feed production [36,37].

The need to recognize elective wellspring of protein to grow minimal effort encourage feed ingredients on the basis of reasonable and renewable food assets for small and medium scale fish ranchers are along these lines, essential [38-41]. It is additionally imperative to consider that the chose encourage ingredients don’t struggle with human sustenance security interests.
Collection and Formulation of Feed Ingredients

Chosen potential food ingredients with a unique spotlight on wellsprings of plant root were utilized as a part of this study [42-47]. Choice of the feedstuffs depended on the accessibility of the ingredients. The agro-industrial by-products accessible in Hawassa city, for example, wheat grain, beer waste; potato scrap and Jatropha seed cake meal were gathered from various production lines [48-51]. Cereals, for example, maize, sorghum, wheat, rice, soybean, bone supper and groundnut were bought from local markets. Later, six exploratory eating regimens containing 40% of 1Maiz:1Sorghum for control diet or diet “A”, coffee husk/pulp for diet “B”, wheat bran for diet “C”, beer sludge for diet “D”, potato scrap for diet “E” and 2JCKM:1, Wheat: 1, Rice for diet “F” were planned by blending with basal food ingredients like soy bean, bone/meat dinner and groundnut [52,53]. In the wake of blending, all the food ingredients were sun-dried and pounded into powder utilizing an electric sledge factory. The final mixture of every diet was made into moist pellets and put into plastic packs [54-57] (Figure 2).

Medical Advantages of Tilapia

Eating of Nile Tilapia fish benefits human in many ways by preventing Heart Diseases because of high-quality proteins, omega-3 fatty acids and amino acids [58-60]. Eating tilapia all the time may help you control your body weight. Utilization of these sorts of unsaturated fats is thought to be connected with decrease in circulatory strain and lessened danger for specific diseases, provocative conditions, for example, rheumatoid joint inflammation, and even mental decay [61-67]. Tilapia is actually low in fat, and just contains around 128 calories in each 3.5-ounce bit. Tilapia also helps people to manage the blood sugar levels.

Is Tilapia Dangerous to Human Health?

Individuals who eat more fish has brought about utilization of expanding amounts of fish, for example, tilapia that may accomplish more harm than good, since they contain elevated amounts of omega-6 unsaturated fats, likewise called n-6 PUFAs, for example, arachidonic corrosive [68-70]. Tilapia may contain mercury and different contaminants that could be unsafe for pregnant ladies, nursing ladies and young children.

Discussion

The development and food use effectiveness of adolescent O. niloticus were influenced by various natural components, for example, water quality parameters including water temperature, pH, nitrogen waste, dissolved oxygen fixation, and food quantity and quality, hereditary cosmetics, sex of the fish and their collaboration [71]. Generally, the protein nature of dietary ingredients is one of the main elements influencing fish execution and protein absorbability is the principal measure of its accessibility to Fish. Protein nature of dietary protein sources relies on upon the amino acid structure and their absorbability [72,73]. The absorbability of ingredients gives knowledge concerning supplement usage and ought to empower better ingredient substitutions in weight control plans intended for target species. The supplement absorbability will differ based upon the arrangement of ingredients utilized.

References

12. Nekoubin H, Sudagar M (2013) Effect of different types of plants (Lemna Sp., Azolla filiculoides and Allâifa) and artificial diet (with two protein levels) on growth performance, survival rate, biochemical parameters and

