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Introduction 
Rotating disk flow plays an important role in the field of engineering 

and industry. Centrifugal pumps are extensively used in petroleum 
industry to transport high viscosity fluids such as waxy crude oils. The 
first study of rotating disk was introduced by Von Karman in 1921 [1]. 
He was able to found that the rotating disk flow is a type of boundary 
layer flow and there is no depend of radial distance on the boundary 
thickness. In 1934, cochran [2], provided asymptotic solution to the 
ordinary differential equations derived by Von Karman. Although the 
analysis was simple but valuable in the field of rotating field. The work 
of cochran was extended by Benton [3], in 1966. He provided better 
solutions and solved the unsteady problem.

In recent years, much attention has been given to the rotating flow 
of non-Newtonian fluids concerning to its applications in industries. 
The steady flow of non-Newtonian fluid over rotating disk with 
uniform suction was considered by Mithal [4], in 1961. His solutions 
were valid for small values of non-Newtonian problems.

Later, Attia [5] in 2003 extended the idea of Mithal and studied the 
same problem to the transient state with heat transfer. Their solutions 
were valid for the whole range of the parameters. In addition the reader 
may consult [6,7] for the studies of non-Newtonian fluids.

Boundary layer flow equations are developed by Reynolds number 
Re → ∞ in the boundary layer region combine with the use of the order 
of ε2 Re≈1, where ε 2→ 0.

A challenging mathematical model is developed with the non-
linearity in the term involving maximum order derivation. Most 
of analytic methods such as Adomian Decomposition Method, 
Differential Transform Method, Variation Iterative Method and 
Optimal Homotapy Asymptotic Methods fails to solve this problem. 
We handle this problem by HAM BVPh2.0 package [8] using 20th-
order of approximations.

The following strategy is applied to the rest of the paper. In section 
3 the basic governing equations for the motion are formulated in 
cylindrical coordinates. Section 4 is the solution by homotopy analysis 
method. Section 5 is the error analysis. Section 6 contains the numerical 
results and their discussion for different values of physical parameters. 
Finally, our conclusion follows in section 7. 

Formulation of the Problem
 Let us consider the steady incompressible flow of a Rivlin-Erickson 

type fluid produced by the rotation of an insulated disk of radius R with 
angular speed Ω and radial stretching. The disk is stretching in radial 
direction which has a velocity uω (r). The co-ordinate system (r,θ,z) is 
adopted whose origin is taken at the center of the disk. In which r-axis 
is along the radius of the disk, z-axis is perpendicular to the disk and 
θ is oriented in the direction of rotation. Assuming flow is laminar, 
axisymetric and its density ρ, is constant. 

Boundary conditions

;     ;     0    atz 0
0;     0    asz

u Ar v r w
u v ∞

= = Ω = =
→ → →

  

 

            (1)

Due to no penetration the value of w  vanishes near the surface of 
the insulated disk. The tangential velocity v have a value Ωr at the disk 
surface. The position vector is given by 

( )cos , sin ,r r r zθ θ=


The velocity vector is ( )0,0,ω = Ω


.

The basic equations governing the flow of second grade fluid is the 
continuity equation 

. 0u∇ =


 					                (2)

and Navier-Stokes equations (NSE)

( )2 .DV w V w w r p
Dt

ρ τ
 

+ × + × × = −∇ +∇ 
 



  

      		                 (3)

where D
Dt

 is material derivative ρ is constant density, p  is dynamic 

pressure, τ is shear stress, r is the position vector V


is velocity vector 
and w is the rotational vector given as 
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z-component of momentum equation: 

( )1 1zr z zzrw w v w w pu w
t r r z z r r r z

θτ τ τρ
θ θ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + = − + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

     

 

  (12)

After making use of assumptions and shear stress eqns. (10-12) 
takes the form 

2 2 2 2
2

2 2 2

2
2 2

1 2

2 2 3 2
2

2 2 3

2 22 2

2 1 1[ ( ) 2 ( )

12 ( ) 2 2 2

u v u p u u w u uu w v r
r r z r r r r z r z r

v v u u u v
r r r z z z r r r

v v w w w u uu
r r r r r r r r

ρ µ

α

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
− + − Ω − Ω == − + + + + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂ ∂ ∂ ∂
+ + + −

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂
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wu
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∂ ∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
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∂
+

      



        

         





2 3 2 3

3 2 2 3

3 2 3 2
2

2 3 2

2
2

2 3 2

1 ( )

1 2) 2 2

u w u u u v uu
z r z r z r z z r r z

w w w u w u uw w
z r z z r z z z r r

v u u u w u
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∂ ∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + + −
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  (13)
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  (15)

Radial co-ordinate is scaled on a characteristic length along the 
radius of disk R, and the surface normal co-ordinate is further scaled 

on boundary layer thickness 
1
2( )νδ =

Ω
. 

* *
1
2

,     
( )

r zr z
R ν

= =

Ω

				                   (16)

The radial and azimuthal velocity components are non-
dimensionalized using the local surface velocity ΩR, and the axial 
velocity component is non-dimensionalized with the local boundary 
layer angular velocity (Figure 1). 

cos
sin

, ,

r u
r v

r V w
z w

θ
θ

0     
     0     = = =
     Ω
     
     






 



where r is the radius, θ is the angle and z is a wall normal co-ordinate, 
, ,u v w  

are radial, azimuthal and axial velocity components respectively. 
The continuity equation for incompressible fluid is 

u v w u
r r z r
∂ ∂ ∂

+ + + =
∂ ∂ ∂
    				                    (4)

Equation (3) becomes

( ) ( )




52 43
1

[ . 2 ] .v v v w V w w r p
t

ρ τ∂
+ ∇ + × + × × = −∇ +∇

∂ 

 











  

	              (5)

Where 1 is the material differential term. The Coriolis force terms 
2 given as 

2
2

2
0

v
u

w v

− Ω 
 Ω × =
 
 
 





  				                     (6)

the centrifugal force term 3 is 

( ) 2

cos
sin

Ù
0

r
r

w w r

θ
θ

− 
 − × × =
 
 
 

   			                   (7)

The pressure term 4 in component form is 

0.2

10.2

pcm
r

pcm
r

p
z

θ

∂ 
 ∂ 

∂ 
 ∂ 
∂ 

 ∂
 
 

and 5 is stress tensor in a second grade fluid given as 
2

1 1 2 2 1A A Aτ α α= + +
  

 				                      (8)

Where α1 α1 are material constants and 1A


 and 2A


 are Rivlin-
Ericksen tensors, given as

1 ; .TA L L L u= + = ∇


   



1
2 1 1 1

Td AA A A L L A
dt

= + + +


   
 

The continuity equation in cylindrical coordinates has the form
( )1 0
ru w

r r z
∂ ∂

+ =
∂ ∂



 				                 (9)

Momentum equations in cylindrical co-ordinates are r-component 
of momentum equation: 

( )2 1[ ]1 12 rr r rzru u v u vv u pu w v r
t r r r z r r r r z r

θ
θθ

τ τ τρ τ
θ θ

∂∂∂ ∂ ∂ ∂ ∂ ∂ + + − + − Ω − Ω = − + + + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 



      

     (10)

θ-component of momentum equation: 

( )2

2

1 1 12 r z r r
rv v v v uv v pu w u

t r r r z r r r r z r
θ θθ θ θ θ
τ τ τ τ τρ

θ θ θ

 ∂∂ ∂ ∂ ∂ ∂ ∂ −   + + − + + Ω = − + + + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

       

  

  (11)
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* * *,     ,     u v wu v w
R R δ

= = =
Ω Ω Ω
   			                (17)

We scale the pressure as 

*
2 2

pp
Rρ

=
Ω
 					                    (18)

Particular choices of above dimensionless values leads to the 
Reynolds number 

2

Re ρ δ
µ
Ω

= 					                    (19)

Using eqns. (16-19) and making use of ( )2 1Re Oε = , the continuity 
equation (9) and momentum equations (13-15), after dropping 
asterisks, we obtain 

( )1 0
ru w

r r z
∂ ∂

+ =
∂ ∂

				                  (20)
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2 22 2 0u u v v
z z z z
∂ ∂ ∂ ∂

− − =
∂ ∂ ∂ ∂

			                                (23)

The terms 22 δ νΩ  and 2 22 vρ δ νΩ are the projections of the 
Coriolis onto the axis r and θ, respectively, while the term 2 rρ δ νΩ is 
the projection of centrifugal force. where f(z) and g(z) can be considered 
as dimensionless velocities onto the r-axis depends only on z. 

Boundary conditions in non-dimensional form are 

  ;     ;     0    atz 0
0;     0    asz

u r v r w
u v

γ
∞

= = = =
→ → →

		               (24)

where 
Aγ =
Ω  is the stretching parameter.

To convert the partial differential equation into ordinary differential 
equation we make the following transformations. 

( ) ( ) ( ),     ,     
2
ru f z v rg z w f z= − =′ = 		                (25)

The continuity equation satisfied identically and momentum 
equations take the following form after algebraic manipulation 

] [ ( )'2 2 '2 ''22 4 2 4 1 2 4 8 4 2 0ivf ff g f g f f g gg f ffβ α′′ ′′′ ′ ′ − − + − + + + + − + = ′ ′ ′ ′   (26)

[ ]2 0f g fg g f g f g f gf fgβ α′ ′ ′′ ′ ′ ′′ ′′ ′ ′′− + + + ′ ′′− − ′+ + = 	               (27)

4 0f f g g′′ ′′′ ′ ′′+ = 				                   (28)

Boundary conditions becomes 

( ) ( ) ( ) ( ) ( )0 2 ,     0 0,     0 1,     0,     0f f g f gγ ∞ ∞= − = = =′ =′ (29)

where 1αα
µ
Ω

=  is viscoellastic parameter, 2β δ ν= Ω  is the rotational 

number, 
2kE

S
ν

=
Ω

is Ekman number and S is the height.

The model applies strictly to an infinite disk, but can be applied to 
a finite disk of radius R, provided that R>δ is satisfied. 

Solution by Homotopy Analysis Method
By the HAM method, the functions f(z)and g(z)as: 

( ) ( ),
0 0

, ,k k
m m n

n n

f z z exp nz
∞ ∞

α
= =

= −∑ ∑ 		             (30)

( ) ( ),
0 0
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m m n

n n

g z b z exp nz
∞∞

= =

= −∑∑  		               (31)

where ,
k k
m na z  and ,

k k
m nb z  are the coefficients to be determined. Initial 

guess and auxiliary linear operator are chosen as follows: 
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z
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−−= − + = 		                 (32)

3 2

3 2,     2 ,f g
f f g gL L

z z z z
∂ ∂ ∂ ∂

= − = +
∂ ∂ ∂ ∂

			                 (33)

the above auxiliary linear operators have the following properties 

( )
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1 2 3

/ 2
4 5

0,

0,

z z
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z
g
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−

−

+ + =

+ =
			                (34)

where ci (i=1-5) are arbitrary constants. The zeroth order deformation 
problems can be obtain as: 

( ) ( ) ( ) ( )01 ;ˆ ˆ ;f f fq L f z q f z qh N f z q  − − =   	                             (35)
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where q is an embedding parameter, hf and hg are the non-zero auxiliary 
parameter and Nf and â€¢ N  are nonlinear operators.

Figure 1: Geometrical representation of the ow over a radially stretching 
rotating disk
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For q=0 and q=1 we have: 
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		              (39)

Therefore, as the embedding parameter q increases from 0 to 1, 
( )ˆ ;f z q and ( )ˆ ;g z q  varies from their initial guesses f0 and g 0to the 

exact solutions f(z) and g(z)respectively. Taylor’s series expansion of 
these functions yields: 
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where 
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= =
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	              (41)

Keeping in mind the above series depends on hf and hg On the 
assumption that the non-zero auxiliary parameters are chosen so that 
Eq.(39) converge at q=1.

Therefore we can obtain: 

( ) ( ) ( )

( ) ( ) ( )

0
1

0
1

,

.

m
m

m
m

f z f z f z

g z g z g z

∞

∞

=

=

= +

= +

∑

∑
			                 (42)

Differentiating m-times the zeroth order deformation equations 
(35) and (36)one has the mth order deformation equations as: 

( ) ( ) ( )1 , ,f m m m f f mL f z f z h R zχ − −  =  		               (43)

( ) ( ) ( )1 , ,g m m m g g mL g z g z h R zχ − −  =  		              (44)

where, the boundary conditions (29) takes the form 
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Finally, the general solution may be written as follows: 

( )

*
1 2 3

* 2
4 5

( ) z z
m m

z

m m

f z f c c e c e

g z g c c e

−

−

= + + +

= + +
			              (49)

Where *
mf  and *

mg  are the special solutions. 

Error Analysis
To perform analysis of the problem under consideration we made 

the first error analysis to make sure that our analysis are reliable upto 
the scale of minimum residual error. Before to discus and give physical 
predictions we perform error analysis to investigate the validity of the 
HAM techniques. For this purpose, Figure 2 and Tables 1 and 2 are 
made. Table 1 represents the nonzero auxiliary convergence control 
parameters hf and hg and the minimum values of total averaged squared 
residual errors executed for different orders of approximations. the 
total squared residual error t

mε  can be minimized by increasing the 
order of approximations. Here, it can be seen that increasing the order 
of approximations the total squared residual errors are reduced. Table 
2 illustrate the individual average squared residual error at different 
orders of approximations. Besides this Figure 2 also shows the maximum 
average squared residual error at different orders of approximation. It 

Order of 
approximation fh gh t

mε
0 0 0 8.75827 × 10-4

-0.0692346 -25.5265 2.61041 × 10-4

-0.0823316 -39.7366 1.15004 × 10-5

-0.0854184 -28.1879 6.57551 × 10-6

-0.103503 -33.9341 3.73624 × 10-6

-0.0954044 -23.8306 2.83147 × 10-6

Table 1: Optimal values of convergence control parameters versus different orders 
of approximation.

m ε f
m ε g

m
Used CPU time

2 3.36317 × 10-5 2.6919 ×10-6 2.46874 (seconds) 
6.98761 × 10-6 2.54788 ×10-6 11.0518 (seconds) 
3.50986 × 10-6 2.49417 ×10-6  34.3474 (seconds) 
2.21929 × 10-6 2.45682 ×10-6  80.3647 (seconds) 
1.5526 × 10-6 2.4233 ×10-6 171.906 (seconds) 

1.15881 × 10-6 2.39127 ×10-6 206.126 (seconds) 
9.05047 × 10-7 2.3602 ×10-6 632.98 (seconds) 
7.30949 × 10-7 2.32987 ×10-6 1298.4 (seconds) 
6.05727 × 10-7 2.3002 ×10-6 2435.04 (seconds) 
5.12274 × 10-7 2.27111 ×10-6 4670.28 (seconds) 

Table 2: Individual averaged squared residual errors using optimal values of 
auxiliary parameters. Using γ=0.01; α=0.1; β=0.5.
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can also be observed that the total averaged squared errors and average 
squared residual errors are decreasing as the order of approximation is 
increasing for different values of physical parameters α and β. 

Results and Discussion
In this section, we present graphical results of the system of coupled 

nonlinear ODE’s given in eqn. (26) and eqn. (27) corresponding the 
boundary conditions (28). Numerical Solution is obtained by means of 
the BVPh2.0, a HAM Mathematica package [9,10]. For better analysis, 
Figures 2-16 are plotted. In order to get the numerical solutions of 
the above equations, it was translated into BVPh 2.0 program in 
Mathemetica by setting the required error 10-10. The semi infinite 
domain z ε [0,∞) is replaced by a finite domain z ε [0,z∞]. In practice, 
z∞ should be chosen sufficiently large so that the numerical solution 
closely approximates the terminal boundary conditions. 

Figures 3-5 show the influence of the viscoelastic parameter α on 
the non dimensional axial velocity component f (z) for fixed values of 
γ=0.01 and β=0.1, 0.5, 5, respectively. It is observed that increasing α 
the speed of the flow reduces. This is due to the fact, that increasing 
non-Newtonian effect α shear forces increases in the fluid domain 

which reduced the speed of flow. Also it can be noticed that large values 
of rotation number β dominate the influence of viscoelastic parameter 
α, while the effect of α ,can be seen only for small values of β [11-15].
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Figure 2: Residual error profile for the axial component of velocity versus order of approximation by taking fixed values of α, β and γ.
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Figure 3: Axial component of velocity profile f(z) for various values of 
viscoelastic parameter α, for fixed values of β=0.1 and γ=0.01 . 
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Figure 4: Axial component of velocity profile f(z) for various values of 
viscoelastic parameter α, for fixed values of β=0.5 and γ=0.01. 
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Figure 5: Axial component of velocity profile f(z) for various values of 
viscoelastic parameter α, for fixed values of β=0.5 and γ=0.01. 
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The variation of dimensionless axial velocity component f (z) 
versus axial direction z for different values of rotation number β are 
plotted in Figs. 6-8, for fixed values of slip parameter γ=0.1,0.5 and 
γ=0.8, respectively. It can be seen that increasing the value of β results 
in an increase in the axial velocity component near the disk; however, 
as expected the rate of increase of the axial velocity is negligible far 
away from the disk.

To investigate the fluid velocity along azimuthal direction with and 
without Coriolis and centrifugal force Figure 9 is made. Near the disk 
there is no effect on the velocity component f and far away these forces 
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Figure 6: Axial component of velocity profile f(z) for various values of rotation 
parameter β, for fixed values of α=0.1 and γ=0.01. 
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Figure 7: Axial component of velocity profile f(z) for various values of rotation 
parameter β, for fixed values of α=0.5 and γ=0.01. 
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Figure 8: Axial component of velocity profile f(z) for various values of rotation 
parameter β, for fixed values of α=0.8 and γ=0.01. 
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Figure 9: Axial component of velocity profile f(z) for various values of rotation 
parameter  β, for fixed values of α=0.8 and γ=0.01. 
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Figure 10: Radial component of velocity profile f(z) for various values of 
rotation parameter α, for fixed values of β=0.1 and γ=0.01. 
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Figure 11: Radial component of velocity profile f'(z) for various values of 
rotation parameter β, for fixed values of α=0.5 and γ=0.01. 

effect f (z), the combine effect of these forces clearly effect the velocity 
field f. As expected, near the disk the Coriolis and centrifugal forces 
balance the effect of each other [16-25].

Figures 10-12 depict the effect of viscoelastic parameter α rotation 
parameter β and slip parameter γ for selected values of rotation 
number β and slip parameter γ. One can see that increasing non-
Newtonian effect the boundary layer region decreases and increasing 
rotation number the boundary layer increases and similar case is 
seen for increasing slip parameter γ. The influence of centrifugal and 
Coriolis forces on radial velocity component are graphed in Figure 13. 
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Figure 12: Radial component of velocity profile f'(z) for various values of 
rotation parameter γ, for fixed values of α=0.5 and β=2.

f '(z)

f  '(z)

f  '(z)

f  '(z)

0 2 4 6 8 10 12
z0.00

0.05

0.10

0.15

0.20

without centrifugal & coriolis forces

with centrifugal & without coriolis forces

with effect of coriolis & Centrifugal forces

Figure 13: Radial component of velocity profile f'(z) for various values of 
rotation parameter γ, for fixed values of α=0.5 and β=2.
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Figure 14: Azimuthal component of velocity profile g(z)for various values of 
viscoelastic parameter α, for fixed values of β=0.5 and γ=0.01.
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Figure 15: Three dimensional skich of the radial velocity component for the 
fixed values of α=0.1, β=0.5 and γ=0.01. 

It is interesting to note that the radial velocity increases by taking the 
effect of these forces. The effect of centrifugal force near the surface of 
the disk is seems to be negligible and far away from the surface of the 
rotating disk its effect can be seen clearly. The influence of different 
values of viscoelastic parameter α=0.1 0.5, 0.8 for fixed values of β=0.5 
and γ=0.01 on radial velocity component are plotted in Figure 14. It is 
also interesting to note that increasing the parameter α the azimuthal 
velocity component also increases but for small values of β and γ this 
increase is small in magnitude [26-32].

Table 3 and 4 are made to observed the variation of azimuthal 

velocity component for selected values of α and γ for the fixed values 
of other parameters of interest. Here it can be seen that on increasing 
α and γ the azimuthal component of velocity g(z) also increases. Three 
dimensional radial and azimuthal velocity components are plotted in 
Figures 15 and 16 for different values of α=0.1, β=0.5 and γ=0.01.

Conclusion
Three dimensional rotating flow over a long disk of a viscoelostic 

fluid under the influence of Coriolis and centrifugal forces are studied. 
From the context of transformations and dimensional analysis 
mathematical system of ODE’s are obtained. A careful analysis of 
the flow is carried out by means of HAM Mathematica package. The 
following conclusions are made during analysis: 

z α=0.1 α=0.5 α=0.8
0.0 1 1 1
.0 0.607597 0.611658 0.614624
.0 0.368775 0.37217 0.374672
.0 0.223733 0.226002 0.22768
.0 0.135716 0.137139 0.138193
.0 0.0823197 0.0831935 0.0838407
.0 0.0499304 0.0504628 0.0508571
.0 0.0302846 0.030608 0.0308476
.0 0.0183686 0.0185649 0.0187103
.0 0.0111412 0.0112602 0.0113484
.0 0.00675747 0.0068297 0.0068832

Table 3: Axial component velocity profile g(z) for different values of α. Using β=2; 
γ=0.01.

z γ=0.20 γ=0 .1 γ=0.01
0.0 1 1 1
.0 0.61381 0.6127 0.612154
.0 0.374467 0.373206 0.372588
.0 0.227821 0.226789 0.226282
.0 0.138405 0.137676 0.137315
.0 0.0840168 0.0835399 0.0833018
.0 0.0509798 0.0506798 0.0505289
.0 0.0309269 0.0307418 0.0306482
.0 0.0187598 0.0186467 0.0185893
.0 0.0113789 0.0113101 0.011275
.0 0.00690179 0.00685998 0.00683867

Table 4: Axial component velocity profile g(z) for different values of γ using α=0.5; 
β=2.
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Figure 16: Three dimensional skich of the Axial velocity component for the 
fixed values of α=0.1, β=0.5 and γ=0.01.

1. It is concluded that increasing non-Newtonian parameter α, the 
radial component and axial component of velocity increases,
while the azimuthal component of velocity decreases.

2. It is also concluded that increasing the rotation number β, the
radial and axial components of velocity profile also increases.

3. Further more, increasing slip effect causes the radial velocity
component to increase.

4. Moreover, the radial and axial velocity component increase
by taking the effect of centrifugal and Coriolis forces in the
momentum equations. These finding abstruse and enrich our
understanding about the boundary layer flow of second grade
fluid.
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