Study of the Nutritional Quality and Acceptability of Millet Biscuits (*Pennissetum glaucum* L.) Supplemented with Cowpea (*Vigna unguiculata* L.) and Bambara Groundnut (*Vigna subterranea* L.)

Fatoumata Hama-Ba1, Fatoumata Ouattara1,2, Aly Savadogo2, Mamouna Simpore1,2 and Brehima Diawara1

1Department Food Technologies, Research Institute in Applied Sciences and Technologies (IRSAT), National Center for Scientific and Technological Research, 03 BP7047 Ouagadougou, Burkina Faso

2Center of Research in Biological Sciences Food and Nutrition (CRSBAN), UFR SVT, University Pr Joseph Ki ZERBO, Ouaga 1, Burkina Faso

*Corresponding author: Hama-Ba F, Department Food Technologies, Research Institute in Applied Sciences and Technologies (IRSAT), National Center for Scientific and Technological Research, 03 BP 7047 Ouagadougou, Burkina Faso, Tel: 0022625356031; E-mail: hamafato@yahoo.fr

Rec date: January 18, 2018; Acc date: January 25, 2018; Pub date: February 04, 2018

Copyright: © 2018 Hama-Ba F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The aim of the study was to determine the effect of supplementation of legume flour cowpea and Bambara groundnut (voandzou) from Burkina Faso at different levels 15%, 30% and 50% on the nutritional quality and acceptability of millet biscuits. The macronutrients, Iron and Zinc contents were determined using standard AOAC methods. For the acceptability of cookies, profile test on color, odor, texture and hedonic test were performed with a panel of 30 tasters. The energetic value of cookies decreased when the legume flour supplementation increased (479.8 kcal/100 g to 50% level against 490.1 kcal/100 g for the millet cookies (control). The protein content of cookies increased proportionally with the supplementation. The protein contents of cowpea cookies were higher than Bambara groundnut cookies, 12.82 g/100 g and 10.47 g/100 g respectively. Supplemented cookies have low Iron and Zinc contents, 2.23 mg/100 g and 1.87 mg/100 g respectively for cowpea and Bambara groundnut. On the organoleptic level, up to 15% supplementation, there is no significant difference in odor and taste. Cowpea and Bambara groundnut can be used at 15% in enrichment formulations of cereal biscuits.

Keywords: Legume; Biscuit; Protein; Acceptability; Composite flour

Introduction

Millet is the basic food in many African countries. It is used for various foods and traditional drinks. Many millet varieties have higher protein, energy, mineral and vitamin content than other cereals [1,2]. Millet (*Pennisetum glaucum* L.) is rich in methionine and poor in lysine and cysteine, which are essential amino acids [3]. However, millet and sorghum have the particularity of lacking gluten, a protein which is more and more avoided due to the celiac disease. Nutrition and health have become crucial for consumer choice [4]. Many wheat-based products, particularly those from pastry and bakery are increasingly supplemented with millet and sorghum cereals to reduce gluten levels. The use of millet in the bakery and pastry industry does not improve the nutritional value of the products but creates added value [5].

Significant improvement in protein, lipid and ash content was observed in flours made from millet and wheat [6]. Wheat supplementation with millet at 40% yielded good results in biscuits and cakes [7-9]. Grain products are high in energy, but poor in nutritional value [10,11]. Like all cereals, the content of some essential amino acids such as lysine is insufficient to meet the nutritional requirements recommended by the FAO / WHO / UNU (2007) for children aged 2 to 5 years [12]. Ready-to-eat foods such as biscuits are important drivers for nutritional enrichment [13]. They represent an important part of the people’s diet. The introduction of legumes into the production of biscuits is a way to improve the nutritional status of people [14].

In developed countries such as France and Australia, nutrition guides recommend adding of legumes [15-17]. Legumes are characterized by high levels of protein (18-34%) compared to cereals [18,19]. They are rich in essential amino acids such as lysine, tryptophan, and methionine [20,21]. In addition, legumes have the advantage of being traditionally produced and consumed in many developing countries where nutritional deficiencies are a public health problem. According to the ICRISAT report (2015), over 80% of cowpea production comes from sub-Saharan Africa [22]. Many studies on the enrichment of biscuits with legumes have yielded interesting nutritional and technological results [23,24]. In Burkina Faso, cowpeas and Bambara groundnut (voandzou) are two legumes that are traditionally eaten and of good nutritional value [19]. In 2016, annual production amounted to 5,713,304 tons for cowpea and 46,876 tons for voandzou.

The purpose of this study is to determine the effect of the use of flours made from millet and cowpea and Bambara groundnut called “voandzou” legumes on the nutritional quality and acceptability of biscuits. This study will be of great interest for the agri-food industries working for the promotion of local products and in the fight against the nutritional deficiencies of the people.

Materials and Methods

Biological material

Cereal and legume varieties: The cereal used are millet (*Pennisetum glaucum* L.) with the Misari 1 variety. The legumes used are cowpea (*Vigna unguiculata* L.) with the improved Tiligre variety

J Agri Sci Food Res, an open access journal

Volume 9 • Issue 1 • 1000202
and the voandzou (Vigna subteranea L.) with a local white variety of Nobere. Nobere is in the south center region of Burkina Faso. Cereal and legume varieties were obtained from seed researchers at the Institute for Environment and Agricultural Research of Burkina Faso (INERA).

Ingredients: Ingredients added during biscuit production are: sugar, vegetable oil, eggs, milk, corn starch, baking powder and baking soda. The same amount has been added in the different formulations.

Biscuit production

Formulations: The biscuits were produced from the formulations shown in Table 1. The control formulas consisted solely of millet (FM). The other formulas are composed of millet and legumes with different proportions with respectively 15%, 30% and 50% addition of cowpea (FN) and voandzou (FV) flour.

Table 1: Composition of different flours for biscuits production (%).

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Control Flour (FM)</th>
<th>Millet-Cowpea flour (FM)</th>
<th>Millet-Voandzou flour (FV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15%</td>
<td>30%</td>
<td>50%</td>
</tr>
<tr>
<td>Millet flour (%)</td>
<td>50</td>
<td>42.5</td>
<td>35</td>
</tr>
<tr>
<td>Cowpea/Voandzou flour (%)</td>
<td>0</td>
<td>7.5</td>
<td>15</td>
</tr>
<tr>
<td>Sugar (%)</td>
<td>12.5</td>
<td>12.5</td>
<td>15</td>
</tr>
<tr>
<td>Vegetable oil (%)</td>
<td>12.5</td>
<td>12.5</td>
<td>15</td>
</tr>
<tr>
<td>Eggs (%)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Milk powder (%)</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Starch Maize (%)</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Baking Powder (%)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Baking soda (%)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Acceptability tests

A panel of 30 adults (15 women and 15 men) assessed the biscuits. A profile test and a hedonic test were performed. The profile test focused on the color (1: very nice, 2: nice, 3: poor), the odor (1: very pleasant, 2: pleasant, 3: fair, 4: bad, 5: very bad) and the texture (1: very soft, 2: soft, 3: neither soft nor hard, 4: hard, 5: very hard). The hedonic test was performed on a hedonic scale of 5 points (1: very pleasant, 2: pleasant, 3: neither pleasant nor unpleasant, 4: unpleasant, 5: very unpleasant). The plate of each taster is composed of biscuits of the 3 formulations of the same legume and a millet-based control biscuit.

Statistical analysis

Averages and standard deviations were calculated on Excel. Analysis of variance (ANOVA) was performed using the Statgraphics Plus 5.1 software. Each analysis was performed three times per sample and an average was determined.

Results

Chemical composition of raw materials

The nutritional composition of millet and legumes varieties were presented in the Table 2. There is a significant difference in protein, lipids, ash, Iron and Zinc contents. The protein content of legume varieties is about 1.5 times higher than that of the millet variety. Lipid levels are low for both millet and legumes, less than 7%. Iron and Zinc contents are low in millet, cowpea and voandzou. Only the cowpea variety Tiligré has high Iron contents of 7.06 mg/100 g, 2 times higher than those of cereals.
Table 2: Nutritional composition of raw material (expressed in g/100 g of dry matter).

<table>
<thead>
<tr>
<th>Nutrients contents</th>
<th>Biscuit control</th>
<th>Biscuit Millet+15% cowpea</th>
<th>Biscuit Millet+30% cowpea</th>
<th>Biscuit Millet+50% cowpea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity (%)</td>
<td>6.38 ± 0.09</td>
<td>6.77 ± 0.11</td>
<td>7.40 ± 0.06</td>
<td>8.57 ± 0.08</td>
</tr>
<tr>
<td>Carbohydrates (g/100 g DM)</td>
<td>69.34 ± 0.23</td>
<td>69.43 ± 0.40</td>
<td>67.95 ± 0.31</td>
<td>66.84 ± 0.77</td>
</tr>
<tr>
<td>Lipids contents (g/100 g DM)</td>
<td>20.15 ± 0.13</td>
<td>19.19 ± 0.33</td>
<td>18.33 ± 0.20</td>
<td>17.92 ± 0.48</td>
</tr>
<tr>
<td>Proteins contents (g/100 g DM)</td>
<td>7.85 ± 0.11</td>
<td>8.76 ± 0.07</td>
<td>11.14 ± 0.11</td>
<td>12.82 ± 0.30</td>
</tr>
<tr>
<td>Energy contents (Kcal/100 g DM)</td>
<td>490.07 ± 0.66</td>
<td>485.52 ± 1.69</td>
<td>481.32 ± 1.04</td>
<td>479.89 ± 2.39</td>
</tr>
<tr>
<td>Iron contents (mg/100 g DM)</td>
<td>2.44 ± 0.10</td>
<td>2.82 ± 0.34</td>
<td>3.60 ± 0.08</td>
<td>2.23 ± 0.74</td>
</tr>
<tr>
<td>Zinc contents (mg/100 g DM)</td>
<td>2.22 ± 0.10</td>
<td>2.10 ± 0.12</td>
<td>2.05 ± 0.01</td>
<td>1.94 ± 0.14</td>
</tr>
</tbody>
</table>

Table 3: Nutritional composition of biscuits with Millet+Cowpea.

<table>
<thead>
<tr>
<th>Nutrients contents</th>
<th>Biscuit Voandzou 15%</th>
<th>Biscuit Voandzou 30%</th>
<th>Biscuit Voandzou 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity (%)</td>
<td>5.74 ± 0.16</td>
<td>6.26 ± 0.02</td>
<td>8.00 ± 0.09</td>
</tr>
<tr>
<td>Carbohydrates (g/100 g DM)</td>
<td>67.74 ± 0.28</td>
<td>68.65 ± 0.22</td>
<td>68.26 ± 0.23</td>
</tr>
<tr>
<td>Lipids contents (g/100 g DM)</td>
<td>20.35 ± 0.37</td>
<td>19.24 ± 0.10</td>
<td>18.33 ± 0.31</td>
</tr>
<tr>
<td>Proteins contents (g/100 g DM)</td>
<td>9.19 ± 0.08</td>
<td>9.34 ± 0.11</td>
<td>10.47 ± 0.08</td>
</tr>
<tr>
<td>Energy contents (g/100 g DM)</td>
<td>490.90 ± 1.87</td>
<td>485.09 ± 0.50</td>
<td>479.87 ± 1.56</td>
</tr>
<tr>
<td>Iron (mg/100 g DM)</td>
<td>1.64 ± 0.18</td>
<td>1.85 ± 0.41</td>
<td>1.87 ± 0.19</td>
</tr>
<tr>
<td>Zinc (mg/100 g DM)</td>
<td>1.71 ± 0.10</td>
<td>1.71 ± 0.17</td>
<td>1.94 ± 0.18</td>
</tr>
</tbody>
</table>

Table 4: Nutritional composition of biscuits with Millet+Voandzou. DM=Dry matter.
of cowpea hardened the biscuits while that of the voandzou did not change the texture of the control biscuit. Biscuits supplemented with legumes are accepted up to 30% of supplementation. At 50%, the smell and taste of biscuits has changed significantly. At 15% the supplemented biscuits are not significantly different from the control millet biscuit when it comes to smell and taste. The biscuits supplemented with legumes were assessed as having nice color and soft texture. At the hedonic level there is no significant difference between the control and the 15% biscuit. Biscuits with 50% cowpea and voandzou supplementation were less appreciated for smell than for taste.

Conclusion
Supplementation with cowpea and voandzou in the production of millet biscuits leads to high energy biscuits. It improves the levels of protein, Iron and Zinc. However, the soaking time of the raw materials must be controlled to reduce the losses of soluble proteins, minerals that are high in the case of the voandzou. Cowpea and voandzou supplementation improves the color and softness of biscuits. Biscuits at 50% supplementation with legumes are considered unpleasant.

Conflict of Interest Declaration
There is no conflict of interest.

Acknowledgments
This study was supported by McKnight Foundation. The authors of this study express their thanks to the McKnight Foundation team.

References