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Introduction
New perspectives are evolving in respect of the wide range of 

potential thermoluminescence dosimetry (TLD) applications of 
various forms of optical fiber [1,2]. As an instance, optical fiber TLDs 
has been shown to be effective for a range of photon sources, from 
visible and UV, through to x- and gamma-rays of different energies 
[3-5]. Further studies have concerned silica fibers of various shape 
and doped-core dimension, flat optical fibers being shown to lead to 
improved TL response [6-10], it also being demonstrated that the TL 
response of fibers will vary depending upon core dopant concentration 
as well as core size [11-13].

Although commercial TLDs have typically developed, following 
up upon the favourable outcome of studies of various constituents, 
for optical fibers the study of TL yield have been much more limited, 
most typically with germanium, aluminum, oxygen, phosphorus and 
nanomaterial cluster dopants [4,14-16]. Present study seeks to help 
address this lack, expanding investigations to include additional rare-
earth dopants, examining TL response and associated kinetics analysis 
of such optical fibers.

The characterization of the defect centers forms a crucial step in 
understanding the mechanism of TL [17]. In this context, analysis of 
glow curves offers a sensitive and suitable technique for such study. 
Here, in present study, new materials are tested to examine their effect, 
both on TL response and kinetic parameters.

Method and Materials
Optical fiber fabrication and preparation

The samples are standard circular cross-section optical fiber of 125 
µm outer diameter, fabricated using the facilities of the University of 
Malaya fiber pulling lab. The 9 µm central core that forms the dopant 
channel has been confirmed using the energy-dispersive x-ray (EDX) 
facility of an SEM, doped-core and silica cladding mappings being 
obtained for all but one of the samples (Figure 1). For Al-doped fiber, 

EDX mapping of the core represents a severe challenge, due to the 
neighbouring atomic numbers of Al (Z=13) and Si (Z=14), providing 
for limited differential X-ray fluorescence production, further 
confounded by the associated low energy emissions (Figure 1b). The 
doped elements are compared with SiO2, BaF, GaP, Al2O3, TmF3 as a 
reference for EDX identification. The characteristic peaks through 
which the dopant materials are detected are Kα1 for O, Si, Al, Y, Ba and 
Ga and Lα, β for Tm. Table 1 shows the concentration of each element 
present in the different samples.
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Abstract
Thermoluminescence dosimeters (TLDs) are widely used, serving the needs of various radiation applications. In 

recent times optical fibers have been introduced as alternatives to more conventional phosphor-based TLD systems, 
with many efforts being carried out to improve their thermoluminescence (TL) yield. While there have been extensive 
studies of many of the various TLD characteristics of optical fibers, including TL response, linearity, reproducibility, 
repeatability, sensitivity and fading, far more limited studies have concerned dependence on the type of TL activator 
used in optical fibers, promoting the TL mechanism. Present study focuses on TLD glow curves analysis for five different 
doped optical fibers that have been subjected to photon and electron irradiation. Trap parameters such as activation 
energy and frequency factors have been obtained from second order kinetics analysis, based on computerized glow 
curve deconvolution. An interesting observation is that co-doped fibers typically leads to enhanced TL characteristics, 
pointing to a need for optimization of the choice and levels in use of co-dopants.
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(a)                                 (b) 
Figure 1: SEM-EDX fiber cross-section mappings of (a) Al-Tm-Y and (b) Al-
Tm (H) doped silica.
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The outer polymer cover to the fibers has been carefully removed 
using a chloroform solution, soaking the fibers in the solution for 
30 seconds. The samples are subsequently cleaned with acetone and 
carefully cut to 5 mm lengths using a fiber cleaver. Two sets of five 
samples each were chosen from each type of fiber, the uncertainly 
in fiber length being ± 0.5 mm. Since the fiber samples have closely 
identical mass density, also being carefully selected for uniform length, 
mass normalization of the results has not been required in carrying out 
analysis and comparisons.

Irradiation and readout

Prior to any irradiation run, in order to remove any prior radiation 
history, all samples are annealed at 400°C for one hour, subsequently 
cooled to room temperature. The samples have then been exposed 
to a dose of 8 Gy dose delivered either by 6 MeV electrons or 6 MV 
photons, use being made of a Varian 2100 C linear accelerator. The 
samples were positioned on the surface of a solid-waterTM phantom. 
The field size and surface to source distance were set at 20 × 20 cm2 and 
100 cm respectively. A square applicator with 20 × 20 cm2 aperture size 
was used for electron irradiation.

The TL response of radiated samples was obtained using a Harshaw 
3500 TLD reader, the irradiated samples being thermally stimulated 
from 50°C to 400°C, provided at a heating rate of 20°C/s. The generated 
glow curves have been analyzed using a second order kinetics model 
for TL deconvolution.

Results and Discussion
The differential TL responses of the five sets of optical fibers with 

respect to a dose of 8 Gy are illustrated in Figure 2 for both photon and 
electron irradiations. The TL yields are similar for both the photon and 
electron irradiations, with a deviation between them of less than 4% 
based on the mean values.

In Figures 3-7 the main glow curves for each of the fiber samples 
have been deconvoluted, with a figure of merit (FOM) for fitting of 
about 3.4-5.2% and a mean deviation of 0.8%. The extracted traps 
information from the deconvolution of glow curves is presented in 
Tables 2-6. In the tables, Ea is the activation energy of each trap in units 
of eV, s' is the first derivative of the frequency factor (s-2), n0 is the initial 
concentration of trapped electrons (cm-3). The Peak-I and Peak-T 
values are the glow curves maximum intensity (μC) and associated 
relevant temperature (°C) respectively. The full-width-half-maximum 
(FWHM) value is calculated on the absolute temperature scale and the 
TL emission wavelength is in units of nm.

Tables 2-6 show the first peak (referred to as Trap 1) to have 
an activation energy of 0.9-1.1 eV, a peak intensity of 2-2.9 μC, and 
an emission wavelength of between 1100 and 1400 nm pointing to 
independence from the dopant material, instead being more related to 

the substrate or the silica preform itself. The activation energy suggests 
association between O2 and O2- defects in amorphous and fused silica 
[18].

Examining Figures 2-4, the numerous traps in Al-Y-Tm-doped and 
Ba-doped fiber provide for the greater response of these two forms over 
that of other samples, each of which are composed of lesser numbers 
of traps (Figures 5-7). This supports the underpinning basis of greater 
numbers of traps producing greater absorption. According to Figure 
3 the combination of Al, Y and Tm as fiber co-dopants results in an 
increased number of trap centres and, as a result, enhanced absorption. 
Figure 4 for Ba-doped silica, provides for lower intensity glow peaks 
compared to that for Al-Y-Tm-doped fiber, albeit with similar energy 
traps formed in the two types of fiber.

In accord with Tables 2 and 3, the major difference between Al-Y-
Tm-doped fiber and Ba-doped fiber is the intensity of the individual 

Element Al-Y-Tm Ba Al-Tm (H)     Al-Tm (L) Ga
O 52.66 51.13 54.52 55.09 52.79
Si 46.42 43.27 40.11 41.02 41.81
Ba - 5.6 - - -
Ga - - - - 5.4
Tm 0.25 - 0.24 0.18 -
Al 0.54 - 5.13 3.71 -
Y 0.13 - - - -

Table 1: EDX results for the different doped fiber samples. In this table the weight 
percentage of each material is shown.

Figure 2: Photon irradiation at 6 MV and electron irradiation at 6 MeV.

Figure 3: Glow curve deconvolution for Al-Y-Tm-doped fiber TLD according 
to second order kinetics.

Figure 4: Glow curve deconvolution for Ba-doped fiber TLD according to 
second order kinetics.
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peaks. In the first case, the more energetic traps have the greater 
capacity for storing memory of the irradiation. The complex shape of 
the Ba-doped fiber glow curve is posited to be due to deep interactions 
of this element with the host silica preform.

Figures 5 and 6 show deconvolutions for optical fibers containing 
the same dopant (Al-Tm), one with a greater concentration of Al inside 
the fiber core than the other. Tables 4 and 5 show that in increasing 
this dopant concentration, there is no practical change in the peak 
positions (peak T ≈ 160-166 and 193-206 for traps 2 and 3 respectively), 
but the intensity is increased, the exception being for trap 1 which is 

independent of dopant as discussed earlier (peak I1=1.5 and 1.6 → peak 
I2=2.2 & 2.3 for traps 2 and 3 respectively).

The simple glow curve of Ga-doped fiber is shown in Figure 7. The 

Figure 5: Glow curve deconvolution for high concentration Al-Tm-doped fiber 
TLD according to second order kinetics.

Figure 6: Glow curve deconvolution for low concentration Al-Tm-doped fiber 
TLD according to second order kinetics.

Figure 7: Glow curve deconvolution for Ga-doped fiber TLD according to 
second order kinetics.

Al-Y-Tm doped
Trap: 1 Trap: 2 Trap: 3 Trap: 4 Trap: 5

Ea 1.1 0.9 1.2 2.0 3.0
s' 1.3e3 1.6e4 5.7e6 5.3e11 9.0e19
n0 1.4e4 1.6e4 1.6e4 1.5e4 4.1e3

Peak I 2.9 3.4 4.0 4.8 5.2
Peak T 162 237 295 353 393
FWHM 79 81 73 54 29

Emission 1138 1438 993 628 408

Table 2: Trap parameters for Al-Y-Tm-doped fiber.

Ba doped fiber
Trap: 1 Trap: 2 Trap: 3 Trap: 4 Trap: 5

Ea 1.0 0.8 1.2 1.9 3.0
s' 6.7e4 3.7e4 2.3e6 4.7e11 1.5e21
n0 1.1e4 9.2e3 1.2e4 1.1e4 1.0e3

Peak I 2.8 2.1 3.0 3.4 3.1
Peak T 166 241 297 345 403
FWHM 65 79 73 54 31

Emission 1238 1463 1055 644 408

Table 3: Trap parameters for Ba-doped fiber.

High Al-Tm doped
Trap: 1 Trap: 2 Trap: 3

Ea 1.1 1.5 0.6
s' 1.9e13 1.6e14 7.2e2
n0 5.8e3 4.5e3 1.1e4

Peak I 2.8 2.2 2.3
Peak T 128 160 193
FWHM 33 33 86

Emission 1145 829 1916

Table 4: Trap parameters for high concentration of Al-Tm-doped fiber.

Low Al-Tm doped
Trap: 1 Trap: 2 Trap: 3

Ea 1.1 1.1 0.8
s' 7.6e9 2.0e9 4.3e4
n0 6.8e3 4.3e3 6.7e3

Peak I 2.9 1.5 1.6
Peak T 137 166 206
FWHM 42 48 77

Emission 1128 1111 1503

Table 5: Trap parameters for low concentration of Al-Tm-doped fiber.

Ga doped fiber
Trap: 1 Trap: 2

Ea 0.9 0.8
s' 1.3e7 6.9e4
n0 6.0e3 2.4e3

Peak I 2.0 0.6
Peak T 139 197
FWHM 50 77

Emission 1398 1600

Table 6: Trap parameters for Ga-doped fiber.
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main TL is generated from the first glow peak which is from the silica 
preform, while lesser TL is contributed from peak 2, from Ga traps.

Conclusion
The similarity in activation energy of first glow peak for all fiber 

samples indicates the TL response of the substrate, regardless of the 
dopant in the fiber. It is concluded that different concentration of 
similar dopant will only affect the intensity of relevant glow peaks while 
other factors will remain the same. An interesting observation from 
this study is that co-doping of the fiber is associated with an increase 
in the TL yield, pointing to a need for optimization of the choice and 
levels in use of co-dopants.
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