Supplementation Doses Thyroxine Hormone of Broodstock Mud Crab (Scylla serrata) During Ovarian Maturation

Iromo H†*, Junior MZ‡, Agus MS§ and Manalu W¶

†Department of Aquaculture, Faculty of Fisheries and Marine Science, Bogor Agricultural University, Bogor, Indonesia
‡Department of Anatomy, Physiology and Pharmacology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia

Abstract

The aim of this research was to increase maturity ovarian of broodstock mud crab (Scylla serrata). Mud crab is one commodity yet optimal aquaculture technology. The presumably was to slow the vitellogenesis process stage. The maturity ovarian began by vitellogenin secreted into hemolymph and taken to the ovum to be synthesized into egg yolks. Thyroxine hormone containing elements, and stored in the follicle assist in the process of yolk absorption. This study used treatment more doses of thyroxine hormone supplementation were with doses 0 µg/BW (control), 0.05 µg/BW; 0.1 µg/BW, and 0.15 µg/BW. The results showed that treatment doses of 0.1 µg/BW has accelerated the fastest of maturity ovarian than others. The analysis of variance that the supplementation of hormone thyroxine were a significant effect (P<0.05) in the acceleration of mature ovarian. The supplementation of thyroxine was increase yolk absorption in vitellogenesis process. It has affect as increase concentration of protein and RNA/DNA during maturity ovary.

Keywords: Mud crab; Maturity ovarian; Thyroxine hormone supplementation

Introduction

The mud crab (Scylla serrata) is one of the commercially important crabs and the only species of the genus Scylla in the Indian Ocean. It has both ecological and economic importance to the marine environment and to the coastal fishing villages [1]. However, the production and availability of crab seeds is the main problem in culture of mud crabs. To solve the problem, there is a need to develop a technique to propagate the crab by improving the reproduction of the crab and the survival of the larvae.

Mud crab reproduction required considerable time to produce larvae start from vitellogenesis processes that occur in the body until the embryonic development occurs outside the body. Many factors impact the process were from inside body like hormones and from outside like feed and the environment.

In crustaceans, female reproduction was controlled by a variety of hormonal and neuronal factors [2]. These hormones include the peptidyl hormones, such as the gonad stimulating hormone, and the vitellogenin inhibiting hormone which have an agonist-antagonist effect, respectively, on vitellogenesis. Thyroid hormone is required by all cells in the body to stimulate enzyme synthesis required for cellular metabolism, especially for synthetic anabolism processes. Thyroxine hormone in the circulation of the brood stock can be transferred into the oocyte, the egg and then into the ovary (yolk sac) before ovulation [3]. Thyroid hormones indirectly facilitate the absorption of the vitellogenin from the circulation into the developing oocyte to form yolk. Thyroxine hormone can easily enter the target cell through the cell membrane.

The research of this hormone in mud crab has never been done. Similarly, the physiological condition of the hormone thyroxine is not widely revealed, both the broodstock and the larvae. The present experiment was designed to study profiles and effect of supplementation the thyroxine hormone to vitellogenesis stages of famele S. serrata.

Materials and Methods

Animal

The female mud crab (Scylla serrata) of various maturation stages were obtained from traditional ponds and mangroves in Tarakan Island, North Borneo, Indonesia. The identification of Scylla serrata was conducted according to the description of Kennan [1]. The weights of female mud crabs used ranged from 350 to 450 g. The female S. serrata were classified as vitellogenesis stage 1 (immature), vitellogenesis stage 2 (premature) and vitellogenesis stage 3 (mature) according to John and Sivadas [4]. It were reared in fiberglass tank volume 1000-l and had sandy bottom and shelter provided. A berried female was transferred into an 80-l holding tank equipped with flow-through water system.

Experimental design

The hormone thyroxine of experiment derived from levothyroxine sodium tablets/Thyrax (NVorganon, Oss, The Netherlands). Each tablet contains 100 mg of thyroxine. Observations of concentration hormone thyroxine started mature mud crabs with vitellogenesis stage 1 (immature) using the ELISA method. The hormone thyroxine supplementation started mature mud crabs with vitellogenesis stage 2 (premature). This experiment consists of 4 triplicate treatments and all treatment of supplementation hormone thyroxine are doses; 0 µg/BW (control); 0.05 µg/BW; 0.1 µg/BW and 0.15 µg/BW. Each treatment was repeated three times. The supplementation hormone thyroxine with injection is done once the appropriate dose and carried between the legs of the road and swimming legs used spuit 1 ml. Thyroxine

© 2015 Iromo H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
hormone concentrations in the extract of hemolymph from mature mud crabs with vitellogenesis stage 1-3 was determined according to ELISA method (DRG International Inc., USA).

Chemical analysis

Cholesterol concentrations in the ovaries were determined by Lieberman-Burchard method. Phospholipids (PL) and the phospholipid (NL) concentrations in the ovary were measured by Gas Liquid Chromatography method (GLC) with the method used by Takeuchi. Protein concentration and RNA/DNA in the hemolymph was measured by Nanodrop 2000 Spectrophotometer thermo scientific with absorbance 1 pada 280 nm.

Statistical analysis

Thyroxine concentrations in the hemolymph, hepatopancreas, ovary, sponge and larvae and the concentrations of cholesterol, neutral lipid, phospholipid and protein in the ovary were analyzed by the analysis of variance.

Results

Based on observations of thyroxine hormone concentrations in the female *S. serrata* classified as vitellogenesis stage 1 (immature), vitellogenesis stage 2 (premature) and vitellogenesis stage 3 (mature) showed an increase in concentration during maturity ovary (Table 1).

The result supplementation of thyroxine hormone to female *S. serrata* have increased the concentration in ovary and based on analysis of variance showed that the results were not significantly (P>0.05) between treatments A and B, but significantly (P<0.05) with treatment C and D (Table 2).

Supplementation thyroxine hormone has effects of protein concentration in ovarian maturity that is an increase concentration of protein (Table 2). The based on analysis of variance showed that the supplementation thyroxine hormone have improve protein concentration during ovarian maturation process when compared with control (P<0.05).

The results of RNA and DNA showed it improve accordance development maturity ovary. The highest of increase RNA and DNA occurs in the treatment C (hormone dose of 0.1 µg/BW), and the lowest occurred in treatment A (Table 2) (Figure 1).

Concentration of thyroxine hormone was the highest during the beginning of maturity ovarian development. The results (Figure 1) showed a day maturity ovum development, which starts from vitellogenesis stage II to dispense eggs (berried). In the treatment supplementation hormone thyroxine dose 0.1 µg/BW was the fastest maturity (24 days). In the supplementation it dose 0.15 µg/BW, maturity days decreased to 26 days. The next supplementation dose 0.05 µg/BW needed days maturity to 31 days. The latest day maturity of treatment control was 55 days. Based on the analysis of variance of the addition of multiple doses of the thyroxine hormone in the female *S. serrata* indicates that there is a real effect in the acceleration of mature ovarian stem between treatments. All treatments supplementation thyroxine hormone resulted a significantly (P<0.05) different time maturity ovum than control. This means that the dose of the supplementation thyroxine hormone can affect acceleration mature ovum in the process vitellogenesis (Table 3).

When the female is ready to spawn, egg cells (oocytes) are forced from the ovaries through the seminal receptacles where they are fertilized. The fertilized eggs, which are about ± 0.25 mm in diameter, are then extruded into a large, cohesive mass or “sponge” that remain attached to the fine hairs beneath the abdomen until they hatch to be a larvae. Concentrations of thyroxine hormones in different treatment of supplementation are presented in Table 3.

The result (Table 3) shows that the higher of dose hormone given to female make the higher concentrations of thyroxine were lowered at berried. Based on ANOVA analysis showed significant effect (P<0.05) between the treatment of hormone supplementation to control (Figure 2).

The result of Figure 2 showed that the time (days) development of the embryo to hatching egg. The fastest hatching egg were female crab have supplement thyroxine with a dose 0.15 µg/BW (9 days), the next dose of 0.1 µg/BW (10 days), the third dose of 0.05 µg/BW (12 days) and the longest dose of 0 µg/BW (12.5 days). Based on results of statistical analysis showed significantly (P<0.05) between treatments using the hormone thyroxine supplementation with dose 0.15 µg/BW and dose 0.1 µg/BW than control. But not significantly (P>0.05) between treatments several doses of hormone supplementation.

Female fecundity was also observed to determine the effect of the hormone thyroxine supplementation and the result can be seen in Table 4 below. Fecundity is the number of eggs that can be produced by a mother crab females (Table 4).

The result showed that the highest fecundity values found in crabs that thyroxine hormone supplementation treatment D at dose 0.15 µg/BW (1.86 × 106) and than next dose 0.1 µg/BW, dose 0.05 µg/BW, and control dose 0 µg/BW. Based on the statistical analysis of the overall fecundity of the female crabs were not significantly different (P>0.05).

Discussion

The result of the reasearch that the thyroxine hormone supplementation of the female mud crab maturity had increase of concentration it to transferred in ovary. This is in accordance with the opinion Ayson and Lam [3] that the thyroxine hormone in the circulation of the broodstock can be transferred into the oocyte,
Based on Table 4. Showed that the higher the dose of hormone thyroxine supplementation was dose 0.1 µg/BW. It can more (P<0.05) for the acceleration of maturity ovarian. The better dose of the S. serrata indicates that there is a significantly hormone in the female metabolites in the broodstock. The suplementation doses of thyroxine of the relationship between speed improvement with mature ovarian hormone metabolism with ovarian maturity level. It gives an overview indicate that there are similarities between the patterns of increase in female meet the needs of the parent sometimes has to mobilize fat and protein for growth and development of the ovaries than to in ovarian maturity level. During the period of gonad development, hormone supplementation also affects was the concentration of protein in the ovary. Thyroxine is a hormone that is ionized outside the thyroid follicular cells or on the outside of the apical membrane. In follicles, prohormone thyroxine binding to thyroglobulin. It is known that T4 is a hormone an important role in the metabolism of hormones is thyroxine (T4). Thyroxine is a hormone that plays an important role in the metabolism of hormones and it is synthesized by extra ovarium tissue and it released into hemolymph. It is known that T4 is a hormone an important role to stimulate growth and gonad development. The base on reasearchthat the concentration of the hormone thyroxine supplementation described metabolic activity in line with the maturity ovarian.

Table 3: Concentrations thyroxine hormone of egg berried female S. serrata.

<table>
<thead>
<tr>
<th>No</th>
<th>Treatment</th>
<th>Colour of Sponge</th>
<th>Concentration of thyroxine (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Orange</td>
<td>86.13 ± 7.21</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>Orange</td>
<td>88.30 ± 1.95</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>Orange</td>
<td>93.73 ± 2.33</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>Orange</td>
<td>96.40 ± 2.39</td>
</tr>
</tbody>
</table>

Table 4: Fecundity of female S. serrata.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Fecundity</th>
<th>Weigh Female (gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1.71 × 10^4 ± 1.64 × 10^5</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1.72 × 10^4 ± 1.61 × 10^5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1.79 × 10^4 ± 2.66 × 10^5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>1.86 × 10^4 ± 1.30 × 10^5</td>
</tr>
</tbody>
</table>

The increase of protein and metabolic will be changes affect reproductive performance[8]. Conversely, the decrease of protein for gonad development will be degrade proteins of the body and reduce appearance embryos, which specifically can reduce the availability of nutrients, especially essential amino acids for growth. The result supplementation of thyroxine hormone increased the concentration of protein in the hemolymph compared than control. That mean are similarities between the patterns of increase in hormone metabolism with ovarian maturity level.

Maturity ovarian began by vitelogenesis process, namely the process of yolk formation is characterized by the deposition vitelogenin into the ovum. Vitelogenin secreted into hemolymph and taken to the ovum to be synthesized into egg yolks. Yan [9], states that vitelogenin is a raw material or a precursor of egg yolks are synthesized to mature egg cells (oocytes). Through the bloodstream, vitelogenin be selectively absorbed by a layer of follicle oocytes [10,11]. This process is known as vitelogenesis, while the next is the final maturation process in which there is movement to the edge of the egg nucleus, or germinal vesicle fusing nuclei break down (GVGD) and ovulation is marked by rupture of the follicle and release of the egg layer into the cavity of the ovaries [10,11]. Egg yolks will be a source of nutrients for embryonic development [12]. The raw material vitelogeninis vitelin, which is synthesized by extra ovarium tissue and it released into hemolymph cause response to Vitelogenin Stimulating Ovarian Hormone (VSOH). Based on the results of the study showed that the suplement of the thyroxine hormone to female S. serrata involved vitelogenesis process.
Result on Table 2. The thyroxine hormone supplementation were to the development of RNA and DNA same as the vitellogenesis stage. The effect of thyroid hormone on protein synthesis through mRNA activity given depends on the dose. Thyroid hormones (T3 and T4) in organisms involved in regulation of energy homeostasis and metabolism, protein and lipid. The influence of the thyroid on the synthesis of proteins through RNA activity. The interactions of thyroid hormone and receptor at the core increased activity polymerase enzyme and RNA formation [7]. The increase of transcription RNA and protein synthesis that mean T4 supplementation influenced absorption protein in vitellogenin.

Result showed all treatment to female crabs not influence fecundity process. According to Racotta et al. that the weight of broodstock can be effect of the fecundity, spawning frequency, and degree of fertilization.

Conclusion

The treatment of thyroxine hormone supplementation dose of 0.1 µg/BW to broodstock mud crab (Scylla serrata) during ovarian maturation provided optimum results in the vitellogenesis process and hatching rate of the ovaries.

References