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Introduction
In the construction of several models, we make explicit and implicit 

assumptions. However, quite often, when we solve these models, we 
overlook these assumptions or they are simply “diluted” in the process 
[1]. For models encoded as differential equations, assumptions that 
translate into the invariance of underlying equations are particularly 
useful in the search of their solutions. This is the main thrust of Lie 
symmetry analysis of differential equations pioneered by Sophus Lie 
[2-18]. In such analysis, one algorithmically looks for infinitesimal 
transformations (i.e., transformations depending on a small parameter 
and enjoying additional properties [2,9,17] of both dependent and 
independent variables that does not change the underlying differential 
equation. These transformations are then systematically used for 
finding solutions.

An infinitesimal transformation of both dependent and 
independent variables that leaves a differential equation unchanged 
up to the first-order in the small parameter is called an infinitesimal 
symmetry [17] of this equation. For a given differential equation, the 
set of all its infinitesimal symmetries form an infinitesimal group (Lie 
algebra in the modern terminology) [19]. Perhaps the most useful 
property of a symmetry of a differential equation is that it transforms 
a solution into another one. Thus, for instance, by starting with a 
trivial solution, one may construct a non-trivial one by acting on the 
former with a symmetry [2]. Also, for equations belonging to the 
same family, those that can be invertibly mapped to each other have 
isomorphic symmetry algebra. We shall employ this last property for 
transforming a complicated equation into one which is easier to solve 
[20]. Lie symmetry analysis has a broad range of applications. This 
includes among others, mathematical biology, mathematical physics 
and financial mathematics to name just a few. In this paper, we focus 
our attention on the application of Lie symmetry analysis to financial 
mathematics, and more precisely to the theory of option pricing. 

Option pricing and replication has attracted both the business 
and the academic audience since the development of the Nobel price 
winning Black-Scholes differential equation. Significant success 
has been registered in the attempt to solve the model numerically. 
However, it is not always possible to find practical numerical 
algorithms to solve higher dimensional differential equations. Because 

of its ability to reduce the dimension of the problem, Lie symmetries 
analysis promises to be a very good instrument to mitigate Bellman’s 
“curse of dimensionality” [21]. It constitutes a great tool for analytical 
approximation of the solution even when numerical analysis has 
not been found to be conclusive. Thus far, it has been applied to the 
celebrated Black-Scholes equation with success.
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Indeed, Gazizov and Ibragimov [22] paved the way in the 
application of Lie symmetry analysis to solve financial models [23]. 
Their research was based on the basic BlackScholes equation (1.1). In 
their work, they applied Lie symmetries to transform the BlackScholes 
equation into the heat equation and solved it. Pooe et al. [24] deduced 
a fundamental solution to zero-coupon bonds. Since the introduction 
of Lie symmetries to finance, many models have been designed to 
price and hedge options accurately, and models are becoming more 
sophisticated with the development of new techniques and the 
evolvement of technology (see for example, [12,13]). 

The option pricing theory from inception rested on the arbitrage 
argument which stipulates that by continuously hedging a portfolio of 
stocks and risk-free bonds, one can exactly replicate the return on a 
stock [25]. By doing so, the option value must then be equal to that 
of the replicating portfolio [5,23,11]. In reality, one cannot completely 
hedge a portfolio of stocks and bonds without incurring any costs. 
This is because continuous trading and replication has been proven 
to be very expensive, even though it is possible to consider very 
small proportional transaction cost [11,26-28]. The consideration of 
transaction costs in option pricing is more recent as assumptions of the 
classical models have minimized these costs in the past. The derivation 
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Abstract
We provide a closed-form solution for the European and Asian option pricing models when the source of 

randomness is a fractional Brownian motion as opposed to the geometric Brownian motion. In addition to the 
source of randomness, transaction costs are considered to be non-negligible. For the case of the European option, 
proportional transaction costs hide in the volatility and do not change the form of the model. The construction of the 
solution is based on the symmetries of the model. The model for Asian options has an additional parameter that 
makes the volatility time-dependent, which complicates the solution process. However, we are still able to obtain 
solutions using Lie symmetry methods.



Citation: Nteumagn BF, Pindza E, Mare E (2017) Symmetry Analysis of Options Pricing with Transactions Costs Driven by Fractional Brownian 
Noises. J Appl Computat Math 6: 356. doi: 10.4172/2168-9679.1000356

Page 2 of 8

Volume 6 • Issue 3 • 1000356J Appl Computat Math, an open access journal
ISSN: 2168-9679 

of the option pricing equation relies heavily on the random process 
followed by the underlying stock price. In the case of the celebrated 
Black-Scholes equation, one assumes that the stock follows the classical 
geometric Brownian motion [5,24]. This process assumes independent 
increments, which makes it different from the fractional Brownian 
motion (fBm) where there is a serial correlation in the increments. 
This correlation allows for predictability in the model. The similarity 
between the two processes is the fact that they are both geometric. 

It has been shown [8] that random changes can be accurately 
measured by the use of a parameter known as the Hurst parameter. 
The construction of a dam on the Nile river in the early 1950s saw the 
birth of the Hurst exponent. The measure of the water levels of increase 
or decrease was known to follow a random walk. In other words, the 
next level of increase or decrease is independent of the previous one. 
However, Edwin Hurst, hydrologist in the Nile dam project, showed 
that the long term memory of the system indicates an autocorrelation 
of the time series of water levels, and the rate at which these decrease 
as the lag between pairs of values increase [8]. The movement of stock 
price is similar to this model. We therefore exploit the results by Leland 
[11] for the derivation of our model. Earlier in 2014, we achieved an 
accurate numerical solution of our model with exponential convergence 
([19]) by applying spectral methods to analyze the problem. In this 
paper, we use Lie symmetries to determine the exact solution, which 
sets us a step closer to the calibration of our model. 

We first give some preliminaries on Lie symmetries of differential 
equations in Section 2. Secondly, we determine the symmetries of the 
European and Asian option pricing models and obtain their analytical 
solutions in Section 3. In Section 4 we apply the Lie symmetry 
technique to reduce the PDEs and provide solutions. Finally, we 
provide concluding remarks in Section 5.

Lie Symmetries and Equivalence Transformations
Our aim in this section is to provide a brief introduction to Lie 

symmetry algorithm and define what are equivalence transformations. 
We shall limit ourselves to scalar second-order PDEs as our models will 
fall in this category. We shall sometimes sacrifice mathematical rigor 
for the sake of clarity.

Lie symmetry algorithm 

Classical methods for solving differential equations are ad-hoc in 
nature. Lie symmetry analysis offers a unified approach to the solution 
of differential equations and the reduction of the number of dependent 
variables. Intuitively, a symmetry of a differential equation is an 
invertible change of independent and dependent variables that leave 
the underlying equation unchanged. Finding all the symmetries of a 
given differential equation is a difficult if not impossible task in many 
situations. However, as Lie [2,17] discovered, those symmetries that 
depend on a small parameter and which form a local one-parameter 
group [2,17] can be systematically calculated in fairly general 
situations. In this subsection, we specialize Lie’s symmetry algorithm 
to the class of problems that interest us in this work. Also, we highlight 
a few properties of Lie symmetries. Consider a second-order partial 
differential equation (PDE) in one dependent variable u and two 
independent variables t and x.

E(t, x, u, u(1),u(2))=0                                     		              (2.2)
where E is a sufficiently smooth function of its argument, u(1)={ut, ux}, 
u(2)={utt, utx, uxx}, and the indexes stands for partial differentiations. 
An invertible transformation of both the independent and dependent 
variables

2(t, x,u) O( ),t t Tε ε= + +                      		                (2.3)
2x x (t,x,u) ( ),Oεξ ε= + +                           		               (2.4)
2(t, x,u) O( )u u εη ε= + +                                 		               (2.5)

is an infinitesimal symmetry or Lie symmetry if 

E(t, x, u, u(1),u(2)) =O(∈2).                 			               (2.6)

Whenever, eqn. (2.2) is satisfied, (1) (2)t{ , }, and { , , }x tt tx xxu u u u u u u= =

In order to obtain a practical definition of infinitesimal symmetry, 
we need to transform eqn. (2.6) into an equivalent form by means of 
Taylor’s expansion in ϵ. Thus, we must obtain first the Taylor expansions 
of the derivatives appearing in eqn. (2.6). This is our immediate goal.

We may compute the differential d¯ u in two different ways. The 
first way comes from the very definition of a differential:

, ,t x xdu u dt u d= +
2[ (1 ) ] [ (1 D )]dx O( ).i t x t x i x xu D u D dt D u uε τ ε ξ ε τ ε ξ ε= + + + + + +  (2.7)

Where we have used eqns. (2.3)-(2.4), Dt and Dx are the operators 
of total differentiations with respect to t and x respectively:

.......,t t tt x
t x

D u u ut
t u u u
∂ ∂ ∂ ∂

= + + + +
∂ ∂ ∂ ∂

		                 (2.8)

.......,x x xt xx
t x

D u u u
x u u u
∂ ∂ ∂ ∂

= + + + +
∂ ∂ ∂ ∂

     		               (2.9)

The second way of computing d¯ u is by using eqn. (2.5):
2(u D )dt (u D )dx O( )t t x xdu ε η ε η ε= + + + +                                (2.10)

From eqn. (2.7) and eqn. (2.10), we infer the following system of 
two linear equations in the two unknowns Ūtand Ū x

(1 D )u ,t t x t t tu D u Dε τ ε ξ ε η+ + = +        		               (2.11)
(1 )x t x x xD u D u Dτ ξ η∈ + +∈ = +∈         		             (2.12)

By solving the system in eqn.  (2.11)-(2.12), we obtain
2( ),ut

t tu u Oη= +∈ + ∈      			              (2.13)
2( ),ux

x xu u Oη= +∈ + ∈        			              (2.14)

where

( ) ( ) ( ),ut
t t x tD u D u Dη η τ ξ= − −          		               (2.15)

( ) ( ) ( ),ux
x x t x tD u D u Dη η τ ξ= − −    			             (2.16)

By replacing ¯ u with ¯ u¯ t or ¯ u¯ x in the preceding calculations, 
we arrive at the following expansions of the second derivatives:

2( )utt
tt ttu u Oη= +∈ + ∈        			              (2.17)

2( )utt
tx txu u Oη= +∈ + ∈         			            (2.18)

2( )utt
xx xxu u Oη= +∈ + ∈        			             (2.19)

in which ttuη , txuη  and xxuη   are given by 

( ) u ( ) u ( )tt tu u
t tt t tx tD D Dη η τ ξ= − −      		           (2.20)

( ) u ( ) u ( )tx xu u
t tx t xx tD D Dη η τ ξ= − −

( ) u ( ) u ( )tu
t tt x tx xD D Dη τ ξ= − −       			             (2.21)

( ) u ( ) u ( )xx xu u
x tx t xx tD D Dη η τ ξ= − −    		           (2.22)

The equations (2.15)-(2.16) are known as first-order prolongation 
formulas whereas Equation. (2.20)-(2.22) are the second-order 
prolongation formulas. Note the pattern between first order and 
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second-order prolongation formulas. Such insight may be utilized to 
infer high order prolongation expressions. 

Now let us expand eqn. (2.6) to the second-order in ϵ:

[2] 2
(1) (2)(t, x,u,u ,u ) (E) O( )E X+∈ = ∈             		              (2.23)

whenever eqn. (2.2) is satisfied, where

(t, x,u) (t, x,u) (t, x,u)X
t x u

τ ξ η∂ ∂ ∂
= + +

∂ ∂ ∂
       	         (224)

[1] ut ux

t x

X X
u u

η η∂ ∂
= + +

∂ ∂
           			             (2.25)

[2] [1] tt t x xxu u u

tt tx xx

X X
u u u

η η η∂ ∂ ∂
= + + +

∂ ∂ ∂
   		              (2.26)

We shall also refer to X as infinitesimal symmetry of eqn. (2.2). 
Now, eqn. (2.23) implies that

[2](E) 0X =         				             (2.27)

Whenever eqn. (2.2) is satisfied. Equation (2.27) together with the 
phrase “whenever eqn. (2.2) is satisfied” may be written compactly as 

[2]
.(4.2)(E) 0EqX =     				              (2.28)

Conversely, it can be shown (see for instance [2,3,17]) that if eqn. 
(2.2) can be locally solved with respect to one of its highest derivative 
and eqn. (2.28) is satisfied, so is eqn. (2.6). Therefore, modulo the 
aforementioned local solvability condition, eqn. (2.28) characterizes 
infinitesimal symmetries of eqn. (2.2). That is why it is called the 
linearized symmetry condition for infinitesimal symmetries. 

After substituting one of the highest derivatives of eqn. (2.2) into 
the linearized symmetry condition (2.28), we end up with an equation 
which is a polynomial in the remaining derivatives of u. The latter 
equation splits into an over-determined system of linear PDEs for the 
unknowns τ, ξ and η. There are several computer algebra packages for 
generating automatically this set of linear PDES [12,13] so that one 
seldom generates them by hand. 

Owing the structure of the determining equation (2.28), the 
infinitesimal symmetries enjoy the following additional properties:

•	 If X1 and X2 are two Lie symmetries of eqn. (2.2) and c1 and c2 
are real numbers, then c1 X1+c2X2 is also Lie symmetries of (2.2).

•	 If X1 and X2 are two Lie symmetries of eqn.(2.2), then their Lie 
bracket 

[X1,X2]=X1(X2)−X2(X1) 

is also a Lie symmetry of eqn. (2.2).

Thanks to the above two properties, the collection of all the 
infinitesimal symmetries of eqn. (2.2) form a Lie algebra [2,16,17].

Equation depending on arbitrary parameters: equivalence 
transformations

Here we focus on introducing equivalence transformations and 
we emphasize some of their applications to problems pertinent to 
this paper. As, in the previous subsection, we shall limit ourselves to 
a scenario relevant to this work. Notations that are not introduced 
here are those of the previous sections. For an in-depth study of the 
equivalence problem, we refer the reader to the work of Ovsiannikov 
[18] and former students [2,17]. Consider a family of differential 
equations

E(t,x,u,u(1),u(2),Λ)=0,                                   	                              (2.29)

which is parameterized by a set Λ made possibly of arbitrary 
constants and arbitrary functions of t, x, u and u(1). An equivalence 
transformation of eqn. (2.29) is an invertible change of dependent and 
independent variables which preserves its differential structure. The 
key difference between a symmetry and an equivalence transformation 
is that, an equivalence transformation is required only to preserve 
the structure of the set of arbitrary parameters Λ: If Λ contains an 
arbitrary number α, then any equivalent equation’s parameter set,∧
, must contain an arbitrary parameter ¯ α at the same position in the 
differential structure of the equation. If Λ contains a function f(t,x,u), 
then the parameter set of the equivalent equation, ∧ , must contain a 
function ( t, x,u)f  at the same location in the differential structure of 
the equation. It is straightforward to see that a symmetry of eqn.(2.29) 
is always and equivalence transformation of eqn. (2.29). However, 
the converse is not in general true. Also, two equations of the class 
in eqn. (2.29) that can be mapped to each other via an equivalence 
transformation have isomorphic Lie symmetry algebras [17,2,16,3]. 
The latter results are often used to detect isomorphic equations within 
the class in eqn. (2.29) and to even construct explicitly the equivalence 
transformation which realizes this isomorphic. 

Equivalence transformations induce an equivalence relation 
on the family of equations (2.29): Two equations of the family are 
equivalent if and only if they can be mapped to each other by using an 
equivalence transformation. Finding all the equivalence classes modulo 
this equivalence transformation is the group classification problem 
associated to eqn. (2.29). In the group classification problem, one seeks 
very simple representative of each equivalence class, which in general, 
carries fundamental properties of its members. It is generally good to 
choose a simple enough representative to permit subsequent analysis. 
Indeed, once the properties of a representative are elucidated, they can 
always be mapped to those of a given representative via an appropriate 
equivalence transformation. This is mainly how we are going to exploit 
equivalence transformations in this work. 

The above narrative begs two questions of practical importance: 
How does one find all the equivalence transformations of the family 
(2.29)? How does one verify that two equations of the family in eqn.  
(2.29) are equivalent?

The problem of calculating all the equivalence transformations of the 
family in eqn. (2.29) is as difficult as finding all its symmetries. In some 
particular instance, one may find all the equivalence transformations 
through the use of the chain rule and reasoning about the differential 
structure of the family [2,3,16,17]. As for Lie symmetries, if we restrict 
ourselves to continuous groups of equivalence transformations, 
one arrives at an algorithm [16] which is similar to Lie’s symmetry 
algorithm in its derivation and application. Concerning the issue of the 
equivalence of two equations of the family in eqn. (2.29), one uses the 
fact that two equation are equivalence if and only if their symmetry 
Lie algebras are isomorphic i.e. they have the same structure constants 
after an appropriate choice of their bases [2,3,16,17]. We shall take 
advantage of this result in the sequel.

Mathematical Modeling of Vanilla European and Asian 
Options Driven by Fractional Brownian Motions

This section is dedicated to the derivation of both vanilla European 
and Asian options PDEs under fractional Brownian noises. We only 
provide a detailed derivation of the former since the latter follows the 
same logic mutatis mutandis.



Citation: Nteumagn BF, Pindza E, Mare E (2017) Symmetry Analysis of Options Pricing with Transactions Costs Driven by Fractional Brownian 
Noises. J Appl Computat Math 6: 356. doi: 10.4172/2168-9679.1000356

Page 4 of 8

Volume 6 • Issue 3 • 1000356J Appl Computat Math, an open access journal
ISSN: 2168-9679 

Black-Scholes model under fractional Brownian motion

We provide the derivation of the European option pricing PDE in 
fractional Brownian motion with transactions costs.

Definition: A fractional Brownian motion (fBm) BH(t) with 
Hurst exponent H ∈ (0,1) is a Gaussian process with mean zero and 
covariance [4].

( )22 21(B ,B )
2

HH H H H
t xE x t t x= + − −                     	             (3.30)

Under this model, the trader predicts a price for the stock at time t as
2

2
0(t) S exp (t)

2
H HS t B tσµ σ

 
= + − 

 
     		               (3.31)

which implies a stock model 

(t)HdS Sdt dBµ σ= +              			               (3.32)

We assume that the European call V (t,S) on the underlying stock S 
at time t with exercise T and exercise price E (also known as the strike 
price or just strike) has boundary conditions.

(T,S) max{S(T) ,0}, V(t,0) 0, lim (t,s) S.
s

V E V
→+∞

= − = =             (3.33)

Indeed, if at maturity, the stock price is greater than the strike price, 
then the option is exercised. If instead the stock price is less than the 
strike, then the buyer exercises his right not to buy and the option is 
worthless. 

We also considers the risk free bond price D(t) whose evolution is 
given by

dD(t)=rD(t)dt                                 			              (3.34)

We build a simple portfolio with value Π, say, made of stocks 
and risk-free bonds. We suppose that it costs us a proportion k of the 
turnover to replicate our portfolio (see for example [11]). If we replicate 
the portfolio with X1(t) units of stocks and X2(t) units of risk free bonds, 
then the portfolio Π will be valued at

Π=X1(t)S+X2(t)D(t)                                           		               (3.35)

Assume small changes δΠ, δS and δD in Π, S and D, respectively, 
caused by a small change in time δt. This change in the portfolio value 
is obtained at a transaction cost, which is assumed to be proportional to 

turnover, i.e.,
1(t)2

k X Sδ . Hence we have from (3.35), we have 

1 2 1(t) S (t) D(t)B (t) (t)
2

H kX X X Sδ δ δ δΠ = + −                                     (3.36)

Where δD(t) is a small change in risk-free bonds, δX1(t) a small 
change in the number of stocks held. The replication interval δt is chosen 
to be minimal. Therefore, by the Taylor theorem [26], expanding V in 
the δ − neighbourhood of t we can write 

2(t) ( )D rD t O tδ δ δ= +
2 2

2 2
2

2
2 2 2

(t) (B (t))
2

(B (t)) (( t) )
2

H H

H H

V V V VV S t S B S
t S S S

VS O
S

σδ µ δ σ δ

σ δ

∂ ∂ ∂ ∂ = + + + ∂ ∂ ∂ ∂ 
∂

+ +
∂

    (3.37)

and
22 2 2

21 1 1
1 2

2 2
2 31 1

2

(t) (t) (t)(t,s) ( )
2

1 (t) (t)( t) ( t)( ) (( t) )
2

X X S XX t S S
t S S

X X S O
t t S

δ δ δ δ

δ δ δ δ

∂ ∂ ∂ ∂
= + +

∂ ∂ ∂
∂ ∂

+ + +
∂ ∂ ∂

	         (3.38)

Now we have

(t) S t .HS S Bδ σ µ δ= +                               		             (3.39)

so
21( B (t))2 2 2( ) (e 1)

H t
E S S

σ δ µδ
δ

+
= −

2 2 2 2( ( ) O(( ) ))H HS t tσ δ δ= +          			            (3.40)

Similarly,
21( (t))2 2 22( ) (e 1)

HB t
E S S

σ δ µδ
δ

+
= −

2 2 2 2( ( t) O(( t) ))H HS σ δ δ= +         			              (3.41)
2 2( ) O(( ) )HE S tδ δ= for the higher even powers of δS, and since 

(δt) is chosen to be very small, higher powers are negligible.

Equation (3.38) gives 

1
1

(t)(t,S) (t) ( )HXX S B O t
S

δ σ δ δ∂
= +

∂
    		             (3.42)

Similarly, (3.37) and (3.36) yield
1

2 1
(t)(t)D(t) t X (t) (t) ( )

2
Hk XrX S B O t

S
δ δ δ σ δ δ∂
Π = + − +

∂
  (3.43)

If V (t,S) is the value of the option replicated by the above portfolio 
Π, i.e., V=Π to reduce arbitrage and remain consistent with economic 
equilibrium [26,27], then by WickIto’s lemmas as in ref. [7]

2 2
2

2( S )
2

V V VV S t
S t S

σδ δ δ∂ ∂ ∂
= + +
∂ ∂ ∂

        		            (3.44)

Since V=Π, δV=δΠ. From (3.35) and (3.36), we have
V
S

∂
=
∂



                 				               (3.45)

2 2

2(t)
2 2

H k V VrB t S t
t S

σδ δ δ
 ∂ ∂

− = + ∂ ∂ 


      		             (3.46)

So we have V=∆S+BH(t) and thus

(t)H VB V S
S

∂
= −

∂
             				              (3.47)

Hence, by the fractional Leland [11] approximation
2 2

2
2Le(H)S

2 2
k VS t

S
σδ δ∂

≈
∂

                		            (3.48)

Where 1

2(H)
( t) H

kLe
π σ δ −

 
=  

 
. Finally, we get 

2 2 2 2
2 2 1 2

2 2( t) (H)S 0
2 2

HV V V VS Le rS rV
t S S S

σ σδ −∂ ∂ ∂ ∂
+ + + − =

∂ ∂ ∂ ∂
. (3.49) 

For vanilla when 
2

2 0V
S
∂

<
∂

the rate at which the loss occurs 

accelerates. That is why it is widely assumed that 
2

2

V
S
∂
∂

is always positive. 
Therefore, Equation (3.49) becomes

2 2
2

2 0
2

V V VS rs rV
t S S

σ∂ ∂ ∂
+ + − =

∂ ∂ ∂
      		           (3.50)

where
2 2 2 1(( t) (H))H Leσ σ δ −= +      			             (3.51)

Without loss of generality, we only consider the case of a European 
call option with terminal condition.

V (S,T)=max{S−E,0}           			            (3.52) 
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We transform the problem into an initial value problem with the 
change of variables τ=T−t. This leads to the PDE. 

2 2
2

2 0
2

V V VS rS rV
t S S

σ∂ ∂ ∂
− − + =

∂ ∂ ∂
  			              (3.53)

Subject to the initial conditions V (S,0)=max{S−E,0}. The option 
pricing with transaction cost has a same form as the classical Black-
Scholes PDE, except for the transformation τ=T−t and the volatility 
parameter which is now given by eqn. (3.51). Proportional transaction 
costs do not affect the linearity of the equation when a vanilla option 
is considered. For the purpose of this work, we will focus on vanilla 
option pricing. The volatility structure of the fBm model depends on 
three important parameters: When we vary δt, the optimal hedging 
interval, we are able to define the minimal volatility for this model as 
well as the equivalent time interval. The volatility structure is given in 
equation (3.51) above and Figure 1 plots the impact of changes in the 
Hurst parameter H on the volatility of the underlying stock. 

2 1 1

2 1 1

2(2 )
2 ( )

22
2

H H

H H

kt t
In t

H kt t

σ δ δσ π δ

δ δ
π

− −

− −

+∂
=

∂
+



                	             (3.54)

Setting this to zero and solving for H leads to meaningless results 
in view of our model. However if we solve this in terms of δt, we obtain

2 1 2 1
4 2

min
22

H H
H Hkσ σ

π σ

− −

   =    
   



       			              (3.55)

When
1 1

22 H Hktδ
π σ
   =    
   

. The profile of the minimal volatility is 

shown in Figure 2.

The complete volatility structure is shown in Figure 3. Notice that 
if k=0 and H=0.5, we have σ =σ. 

Derivation of the geometric average Asian options pricing 
model under fractional Brownian motion

In addition to the assumptions of the European option, Asian 

options posit that the stock price x(t) depends on historical prices. 
However the steps of the derivation of the equation are similar to those 
of the European option differential equation provided in the above 
section. We omit the details of the derivation for this reason. 

The model in this context is given by
2

2 2
2

1 (S/ J) 0
2

V V V V J InS rs rV
t S S J t

σ∂ ∂ ∂ ∂
+ + + − =

∂ ∂ ∂ ∂


                (3.56) 

Where this time the volatility is time-dependent and is given by

2
2 2 2 1

22 (H)signH VHt Le
S

σ σ −  ∂
= −   ∂  

         		             (3.57)

( )2 2(H) kLe tδ
σ π

=  the fractional Leland number, while 

t and S remain the time and price of the stock respectively.
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00

1J(t) (x( ))
t

t
In d

t t
τ τ=

− ∫ here denotes the geometric average of the 

stock price over the time interval [t0,t], V=V (S,t,J) and of course, the 
Hurst parameter H. We can now proceed to do the symmetry analysis 
of these models. We start with the European option.

Reduction of the Option Pricing Differential Equation 
and Solution

We dedicate this section to solving the equations for pricing 
European and Asian options in eqn.  (3.53) and (3.56). We first consider 
European option case, and later, the Asian options under fractional 
Brownian motion.

European call option under fractional Brownian motion 

The first step is to transform Equation (3.53) into a heat like 
equation using the Lie symmetry analysis. Thanks to the computer 
algebra package Symteric [12,13] one does not need to calculate 
the symmetries by hand, but a line of code success to verify that the 
symmetries of the PDE in eqn. (3.53) are as in ref. [10].

Equation (3.53) is reduced to the heat equation by applying the 
transformations

2 2

(S/ E), ,u(y, ) e (S, t)
4 2

yt Iny Vατ βτ τ
σ σ

+= = =     	            (4.58)

where 
2 2(2r )

2
σα −

= , and 22rβ σ= − + . In fact, the transformations 
of variables above give 

 
2 e (u (y ) u(y, ))

2
y

y
u t
S

ατ β τ β τ
σ

+∂
= + +

∂
 

2 2
2 e [(2 )u(y ) 2 (y, )]

8
yu t r u

t
ατ β

τσ τ σ τ
σ

+∂
= + + +

∂


 

2
32

2 4 2 42
2 4 e S [(4 ) u(y, ) 4 (y, ) (y, )]

4

r
y

y yy
u t r u u

S
ατ β σ σ τ σ τ σ τ

σ
− −

+∂
= + − +

∂
 

   (4.59)

Substituting these variables and their derivatives into Equation 
(5.53) yields the one dimensional heat equation

u r yyu=
          					                  (4.60)

together with the initial condition
2(y,0) g(y) e max{e E,0}y yu α= = −    		            (4.61)

with solution
2

2

( 2)( 2) y
2 ( 2)u(y, )

r yy ye Ee
α

αα αα τ αττ
τ τ

+
+ + ∅ + ∅+ + +   = −   

   
     (4.62)

Defining new variables d1 and d2, then converting the variables 
back into the variables in our model, we have

2

1 2 1

1(S/ E) (T t)
2 (T t)

(T t)

In r
d d d

σ
σ

σ

 + + − 
 = = − −

−
          (4.63)

The solution of the PDE is obtained by backward substitution from 
w(y,τ) to V (S,y). We get

V (S,t)=SN(d1)−Eer(t−T)N(d2),                 		               (4.64) 

where N is the standard normal distribution probability mass 
function, which satisfies our equation and the terminal condition. Note 
that when H=0.5 and k=0.002, i.e., 0.2% transaction cost, we obtain 

the solution to the classical Black-Scholes equation. We vary the Hurst 
parameter and plot the solution in Figure 4.

We now consider the Asian option pricing problem in the same 
regime.

Lie symmetry classification of the geometric Asian option 
pricing model under fractional Brownian motion

In this subsection, we apply the theory described above to the Asian 
option pricing problem in fBm. We consider the contextual model 
derived above in eqn.  (3.56) and rewrite it for readability purposes as,

2 2
( )1 0

2 i J

SJIn
JrSVs rV S Vss V V

t
σ− + + + =     	            (4.65)

subject to the pay on

V (S,T,J)=max{J −K,0}

where
2 2 2 1 122 ( t)H HkHtσ σ δ

π σ
− − 

= −  
 

     		             (4.66)

V=V (S,t,J), 0
(1/ t) (r) dr

t
InS

J e ∫= is the geometric average of the price 
of the underlying S since inception τ=0 till time τ=t, K is the strike, 
r is the risk-free rate, which in most emerging markets is nonzero. 
σ is a constant volatility. The minimum tradable interval (δt) is very 
important for the practical aspect of our model. Note that if this is 
zero, it means that we are hedging in continuous time. It has, however, 
been shown (see for example [14]) that in continuous time we face 
the problem of arbitrage. In order to avoid the problem of arbitrage, 
we only consider the case where (δt)≠0. The same condition applies 
to k, the transaction cost. This is a proportion of turnover that would 
be charged for replicating the portfolio. If this is allowed to be k=1, 
we would have more symmetries. However, it is clearly an unrealistic 
scenario. If the turnover on a transaction is equal to the cost of that 
transaction, it would never be worth entering such transactions. 
Despite the above, we find that in eqn. (4.65) in its full glory does not 
lead to any results. However, we distinguish the below cases:
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Figure 4: Volatility profile for σ  with H ∈{0.25,0.5,1}; r=0.02; and T=5, k=0.002.
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Case ( ) 12 11 ( t)
2

HHk Ht σ
π δ −−= − −

We have for this case, 2σ σ= , which gives the simplified model 

2 2 0t J

SJLog
JrSVs rV S Vss V V

t
σ

 
 
 − + + + =

       	             (4.67) 

which admits the symmetries Lie algebra generators

1 t j
JX In J
t

= ∂ − ∂

2 s jX s J= ∂ + ∂

3 VX V= ∂                                              		              (4.68)

in addition to the infinite dimensional symmetry f (t, S, J) ∂V, where

2 2 0t J

SJLog
JrSfs rf S fss f f

t
σ

 
 
 − + + + =

Applying the symmetry X2 to perform the reduction, we have the 
quasi-linear PDE

0
dS dJ dt
S J

= =          				               (4.69)

Which  gives us the transformation variables

y (S,J)=In S–In J,   V(t,S,J)=u(t,y)            		              (4.70) 

Where u satisfies the (1+1) PDE 
2 2(r )u 0t y yy

yu u ru
t

σ σ+ + − + − =      		             (4.71) 

The symmetry Lie algebra of eqn. 4.71 is spanned by the following 
operators:

1 uX ud=

2
1

yX
t

= ∂

2
3 4 4 (rt 2 )t u yX t rtu t yσ= ∂ + ∂ + + + ∂

2
2 2

4 2 2

3 63 (4 t )u y
rt tyX t u
σ σ

 
= − − + ∂ + ∂ 
 

		            (4.72)

2

5 2 2 2 3 2

1
t y u

r y ruX
t t t t t

σ 
= ∂ + + − ∂ + ∂ 

 
4 4 2 4 3

6

2 4 3 2 2
3 4 2 4 3

2 2 2

(16 t ) ( 8rt 8 32 t y)

9 36 3624 34 9 36

t y

u

X t

r t rt t yt rt t t y u

σ

σ
σ σ σ

= ∂ + − − + ∂

 
+ − + + + − − + ∂ 
 

(t, y) ur∞ = ∂∫                                                                                     (4.73) 

Where f (t,y) satisfies the PDE

2 2 0t y yy
yf r f f rf
t

σ σ + + − + − = 
 

Reduction of (4.71) is therefore possible by means of the 
transformation τ=−4σ2/t5, z=y/t2 −rt−σ2t, 

2 5 2 24 / ,z y/ t , (t, y) ( ,z)e rtt rt t u wτ σ σ τ −= − = − − =                (4.74)

to the heat equation

0r zzw w+ = ,            				                 (4.75)

and the solution of the latter is 

1 2( ,z) e (c ) E (c )z rw τ += ℵ − ℵ        			               (4.76) 

with 1
2 (E)

2
z Inc τ

τ
+

= and 2
(E)

2
z Inc

τ
−

= .

Substituting back the transformation concludes this case. 

Case k=0, (δt)≠ 0 

In the case of no transactions cost, we find no symmetry that 
enables us to perform reduction of the PDE. 

Case 1 , 1 / 2 , 0
2 ( t)H

Hk H rπ σ σ
δ −= = =

This condition yields 
1 2 2(InS In J) 1 ( 1 t )S 0

2
H

t SS t
J V V V

t
− +−

+ − + + =                            (4.77)

with basis for the symmetries Lie algebra given by

1 2,j V
S JX s X V
t t

= − ∂ + ∂ = ∂             		             (4.78)

as well as the infinite dimensional symmetry. The reduction process 
using X1 yields the transformation

(InJ ) , t t ,V(t,S,J) V(t, )t InSξ ξ= − = =           	           (4.79)

We substitute the above into (4.77) to obtain the 1+1 PDE

2 2 1 21 1(t t)V (t )V 0
2 2

H H
tV tξ ξξ

++ − + − =       	                          (4.80)

Which  admits the following basis for the symmetry algebra.

1 2 2

1
tHX

t t
= ∂
− +

 

2X ξ= ∂  

3 VX V= ∂  
2 2 1 2 1 2

4 2

((2 2 ) t 3t )
(6 6H)( t t ) 4 2 4

H H

VH

H t tX
H ξξ

+ + + −
= − ∂ − + − ∂ + − + + 

 

2 1 2 2 2 1

5 2

1 (2 2H) t 3( )
2 2 1 2 (6 6 )( t t )

H H

V H

t t tX V
H H ξξ

+ +  + −
= + − ∂ − ∂ + + − + 

 

4 2 3 2 3 2 2 2 1 2

6 2 2

((2 2H) t 3t )
(1 ) ( t t ) 3 2 2 4 2 4

H H H

t VH

t t t tX V
H H H

ξ
+ + +  + −

= ∂ + − + − ∂   + − + + +  
 

(t, ) uf ξ∞Γ = ∂                                                           	           (4.81) 

where f satisfies 2 2 1 21 1(t t) (t t )
2 2

H H
tf f fξ ξξ

++ − + − ft+1 2(t2H −t)fξ+1 

2(t2H+1 −t2)fξξ=0. It is worth noting that the generators of symmetries 
above were obtained by transforming those of the heat equation. Using 
the normal algorithm for generating the symmetries in Section 2, we 
obtain determining equations, of which the closed form solutions are 
difficult to construct  equation (4.80) can be transformed to the heat 
equation by the use of the change of independent variables

3 2 2 2 1 21 1,
2 3 2 2 2 2 1 2

H Ht t t ty
H H

τ ξ
+ +   

= − = + −   + +   
   	            (4.82) 

and the solution is as in case in eqn. 4.2.1. Applying the solution process 
in as per Case 4.2.1 concludes this section.

Concluding Remarks
European and geometric average Asian options were studied in 

this work. We successfully constructed the symmetries of the European 



Citation: Nteumagn BF, Pindza E, Mare E (2017) Symmetry Analysis of Options Pricing with Transactions Costs Driven by Fractional Brownian 
Noises. J Appl Computat Math 6: 356. doi: 10.4172/2168-9679.1000356

Page 8 of 8

Volume 6 • Issue 3 • 1000356J Appl Computat Math, an open access journal
ISSN: 2168-9679 

option pricing model and provided the mathematical tools for 
mapping this model to a known PDE. Despite the transaction cost and 
the source of randomness, the model keeps similar algebraic structure 
to the classical Black-Scholes equation. In other words the model with 
transaction cost, when considering a problem of a vanilla option, keeps 
its classification. Some suggestions were given to relax the assumption 
on the sign of Γ, however, the problem becomes ill-posed if Γ<0. 

For geometric average Asian options, we have provided a 
classification of the PDE and closed form solutions were provided 
whenever it was possible. We notice that though there has been some 
progress in technology, it is still relevant and important to keep the 
rigor of the algorithm. This is due to the fact that though some computer 
algebras are capable to handle generic systems, it is difficult to obtain 
symmetries of some PDEs. As an example, with the parametric time 
dependency of the PDE for the Asian option, we were unable to apply 
Sym to obtain the symmetries. We had to fall back on Ya Lie, in order 
to regain control of the solution process and in the end, we realized 
that not all the determining equations were solvable using the normal 
solution process in Mathematical. It is in this regard that we opted to 
exploit a well known use of symmetries to transform the symmetries of 
the heat equation. 

Methods that have been used so far to obtain the solutions of 
the above problems are ad hoc in nature. We acknowledge that the 
application of Lie symmetries analysis provided here is systematic 
and can be automated. Applying equivalence transformations to 
the reduced model, we transformed these to the heat equation and 
provided a solution thereof. We have limit ourselves to European 
option pricing with constant volatility. We know, however, that in real 
market conditions, the volatility is not constant. Considering stochastic 
volatility in fBm would be an extension of this work. Additionally, it 
will be interesting to now calibrate these models and estimate H for 
a specific asset class in a given period of time. A question of interest 
may be: Could non-market conditions dictate the level of the Hurst 
parameter? In other words, what would have been the effect of the 2008 
crisis to H for a specific product type? Can H capture a similar market 
reaction to another crisis in future? Answers to these question could be 
an interesting extension to the building of these models.
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