
Research Article s

Volume 6 • Issue 2 • 1000232J Electr Electron Syst, an open access journal
ISSN: 2332-0796

          Open AccessResearch Article

Journal of 
Electrical & Electronic SystemsJo

ur
na

l o
f E

lec
trical & Electronic

System
s

ISSN: 2332-0796

Mars et al., J Electr Electron Syst 2017, 6:2
DOI: 10.4172/2332-0796.1000232

*Corresponding author: Nadia Mars, SPEG, ENIG, Tunisia, Center for Research 
in Information and Communication Sciences and Technology (CReSTIC), IUT, 9 Av 
Quebec, 10000 Troyes, France, Tel: 0021694286002; E-mail: nedyamars@hotmail.fr

Received July 14, 2017; Accepted July 25, 2017; Published July 27, 2017

Citation: Mars N, Grouz F, Essounbouli N, Sbita L (2017) Synergetic MPPT 
Controller for Photovoltaic System. J Electr Electron Syst 6: 232. doi: 10.4172/2332-
0796.1000232

Copyright: © 2017 Mars N, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Synergetic MPPT Controller for Photovoltaic System
Nadia Mars1,2*, Faten Grouz1, Najib Essounbouli2 and Lassaad Sbita1

1Research Unit of Photovoltaic, Wind and Geothermal Systems (SPEG), the National Engineering School of Gabes (ENIG), University of Gabes, Av. Omar Ibn El Khattab, 
Zrig Eddakhlania (6072), Tunisia
2Center for Research in Information and Communication Sciences and Technology (CReSTIC), IUT, 9 Av Quebec, 10000 Troyes, France

Keywords: PV system; Synergetic control; Maximum power point
tracking; Boost converter; PV panel

Introduction
Nowadays, solar energy has great importance because of its 

sustainability and environmental friendly characteristic. The 
photovoltaic module represents the fundamental power conversion 
unit of PV system, the fact that the output characteristic depends on 
the solar radiation and the cell temperature [1]. In order to get the 
maximum of power from solar panels and enhance the PV system’s 
efficiency, the selection of a maximum power point tracker (MPPT) 
algorithm is necessary [2].

A significant number of MPPT control systems have been developed 
for years to extract the maximum power that the photovoltaic module 
can provide [3]. Each MPPT has its own advantages and disadvantages. 
Due to their simplicity, perturbation and observation (P&O) algorithm 
and incremental conductance (IC) method are the most widely 
used [4,5]. The P&O algorithm consists of perturbing the PV output 
voltage and observing the output power to determine the peak power 
direction. The IC methods compare between the instantaneous and 
the incremental conductance to track MPP [6]. However, these 
methods have some disadvantages: P&O control fails to track the MPP 
during the rapid solar irradiation changes and IC method around the 
maximum power point [7].

To solve these problems many solutions have been reported in 
literature. To get better performance to the PV system, an adaptive 
perturbation step size has been proposed [8]. This method is effective 
but it is complex in implementation as it needs the operation point 
location. In addition, the implementation of this control is switched 
between adaptive duty cycle and fixed duty cycle control.

There are also other techniques such as fractional short circuit 
current method [9] and fractional open circuit voltage method 
[10]. However, these two methods have a weaker and less accurate 
performance.

In addition, a several number of intelligent methods have been 
adopted to estimate the voltage and the load current values such as 
fuzzy logic, artificial neural networks and genetic algorithms [11-
13]. Such methods are frequently complex and require considerable 
knowledge in control system design.

Recently, sliding mode control (SMC) is used in photovoltaic 

systems [14,15]. SMC is a non-linear control strategy which has several 
advantages such as robustness, good dynamical response and simplicity 
in its implementation. On the other hand, its major drawback is a 
chattering phenomenon. Hence, this phenomenon induces many 
undesirable oscillations in control signal [16]. Synergetic control (SC) 
as a solution is proposed in this paper to ensure stability of PV system 
with fast dynamic response. Synergetic control theory is introduced in 
ref. [17]. SC, like sliding mode control, is a non-linear control strategy. 
It allowed changing the system structure by switching from one set of 
continuous functions of state to another at any instant [18]. Synergetic 
control has the advantage of finite time convergence and tiny steady 
state error. In addition, it should achieve similar performance as SMC 
without chattering phenomenon [19]. A MPPT control strategy based 
on SC has been presented in ref. [20]. However this algorithm has 
the drawback such as parameter tuning difficulties and complexity. 
Therefore, the aim of this paper is to develop a novel SC scheme 
that is simple to implement and possesses an excellent steady state 
performance.

Inspired from the above work, this paper proposes a novel MPPT 
using synergetic approach for stand-alone photovoltaic system. The 
outline of the paper is as flows. The PV panel model is described in 
section II. Section III presents the mathematical model for a boost DC-
DC converter. In the following section, synergetic approach procedure 
is exposed and the proposed synergetic MPPT controller is given. 
Section V presents the simulation result and discussion. In the last 
section, conclusions are given.

Photovoltaic Generator
How a PV cell working

Photovoltaic cell is basically a p-n junction which converts directly 
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sunlight to electricity. When the cell exposed to the sunlight, the cell 
photons are absorbed by the semiconductor atoms, freeing electrons 
from the negative layer. These electrons find their path through an 
external circuit toward the positive layer resulting an electric current 
[21,22]. Monocrystalline, polycrystalline and thin film technologies are 
the major families of PV cells. The absorption depends mainly on the 
cell surface, semiconductor or band gap, the temperature and the solar 
radiation [23].

PV panel model

To model the PV Panel, the scientific community offer several 
models. The single diode model is the most classical one described 
in literature [24]. The equivalent circuit (Figure 1) consists of current 
source to model the incident luminous flux, a diode for cell polarisation 
phenomena, a parallel resistance due to leakage current and a series 
resistance representing various contacts [6].

The general mathematical PV cell equation is given by the following 
equation [25]:

I=IphNp-Id-Ish 					                    (1)

Where, Iph is a photo current, Id is a diode current and Ish a shunt 
current. The module photo-current evaluated as:

Iph=Gk [Isc+kI(Top-Tref)] 				                   (2)

The shunt current is described by the following equation:
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The dark current Id is calculated by the following equation:
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The reserved saturation current varies with temperature is 
described according to the following equation:
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Finally the output current can be expressed as:
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An ideal PV cell has very high equivalent shunt resistance and very 
low equivalent series resistance (Simplification Rsh >>> Rs)

Equation (1) with Rs=0 and Rsh=∞	  becomes:
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 	                                    (7)

PV characteristics

The PV panel specifications used for simulations are presented in 
Table 1.

Figure 2 shows the typical current versus voltage and power 
versus voltage curves for the photovoltaic module. Figures 3 and 4 
show the I-V and P-V characteristics of PV module under different 
temperature levels (fixed irradiance). Figures 5 and 6 show the I-V and 
P-V characteristics of PV module under different solar radiation levels 
(fixed temperature) [20].

It is clear that the PV module inherits nonlinear characteristics 
at its MPP. This MPP varies with temperature and irradiance. Hence, 
PV panel power increases with irradiance increasing or temperature 
decreasing. Therefore, in order to ensure that the photovoltaic system 
work at its MPP, a control algorithm is needed.
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Figure 2: I-V and P-V characteristic curves at a fixed irradiation (G=1000W/m2) 
and a fixed temperature (T=25°C).
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Figure 3: Power-Voltage curve in different temperature (G=1000W/m2).Figure 1: Equivalent circuit of solar cell.

Maximum power (Pmax) 60 W
Open-circuit voltage (Voc) 21.1 V
Short-circuit current (Isc) 3.8 A
Optimum operating voltage (Vmpp) 17.1 V
Optimum operating current (Impp) 3.5 A

Table 1: Specifications of PV Panel.
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DC-DC Converter
In order to extract the maximum power from the PV module, 

the DC-DC converter allows adaptation between the PV module and 
the load [3]. Figure 7 shows the circuit of the boost converter, whose 
output voltage (V0) is more than or equal to the input voltage Vpv (PV 
generator voltage).

The switch S operates at a high frequency to produce a chopped 
output voltage [26]. The power flow is controlled by adjusting the ON 
and off of the switching. Hence, When S=1, the switch is ON. The 
equations can be written as:
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When S=0, the switch is OFF the equation can be expressed in 
equation:
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The boost converter can be used to drive a high voltage load 
from a low voltage PV module. The dynamic model of the used boost 
converter can be derived as:

0

0
0

1 ( )
1

1 1 ( 1)

1 1( )
2 2

pv
pv L

L
pv

L L

dV
i i

dt C
dI V S V
dt L L

dV i i Si
dt C C


= −


 = + −



= − −


 			              (10)

If we set x=[x1 x2 x3]
Tr=[Vpv iL V0]

Tr

With Tr matrix transpose, the above expression can be written as:
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 			                  (11)
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Figure 4: Current-Voltage curve in different temperature (G=1000W/m2).
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Figure 5: Power-Voltage curve in different irradiance (T=25°C).
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Figure 6: Current-Voltage curve in different irradiance.
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Synergetic MPPT Controller
Synergetic control procedure

The general synergetic control procedure is reviewed in this section. 
Synergetic control theory is a nonlinear approach, it uses a non-linear 
model of the power system to overcome the above mentioned problems 
of the linear controls [27]. The nonlinear differential equation of the 
system can be described by the following form [28,29].

( , , )dxx f x s t
dt

= =

                   (12)

Where x=(x1,x2,…,xn) is the state variable vector of size n, s=(s1,s2,…,sm) 
is the control input of size m=1 and t is time.

The SC approach is based on a particular choice of the macro 
variable. Therefore, we started by defining a nonlinear macro-variable 
as follows:

Ψ=Ψ(x,t)                    (13)

The controller objective is to force the system to operate the 
manifold (Ψ=0). However, using the same procedure as in the 
synergetic approach [30,31]. The macro-variable can be a simple linear 
combination of the state variables. Hence, the designer can select 
the characteristics of this macro-variable according to the control 
specifications such as the settling time and the control objective. The 
desired dynamic evolution of the macro-variable is:

0, 0T TΨ +Ψ =



                 (14)

Where T is a specific designer chosen that determines the rate of 
convergence speed to the manifold specified by the macro-variable. 
Taking into account the chain rule of differentiation that is given by: 

d x
dx
Ψ

Ψ = 

                   (15)

Combining 12, 14 and 15

( , , ) 0dT f x s t
dx
Ψ

+Ψ =                    (16)

Finally upon solving equation 16, the control law can be described 
as flow:

[ , , ( , ), ]S x t x t Tδ= Ψ                                 (17)

As can be seen, the control output S depends not only on the system 
state variables but also on the time constant T and the macro variable Ψ 
as well giving the designer latitude to choose the characteristics of the 
controller by selecting a suitable macro-variable and a constant time T. 
By suitable selection of macro-variable, the designer can obtain many 
interesting characteristics such as:

•	 Stability

•	 Noise suppression

•	 Parameters ffinsensffitffivffity.

The procedure summarized here can be performed by hand for 
simple systems, such as the DC-DC boost converter used for this study, 
which has a small number of state variables.

Synergetic MPPT controller

Maximum power point tracking is an essential stage of a 
photovoltaic system for tracking the maximum power. The system 
studied in this paper is a stand-alone PV system. As shown in Figure 8, 

it consists of a PV panel, a DC-DC converter, a load and a synergetic 
controller.

Like all other MPPT, the modelling of the synergetic MPPT 
controller is based on the output power of the cell which is P=V*I. The 
optimisation of the output power is achieved as shown in Figure 2, by 
selecting the manifold as:

0P
V
∂

=
∂

                  (18)

Hence, the manifold is defined as:
P IV I
V V
∂ ∂

Ψ = = +
∂ ∂

                 (19)

In studied DC-DC boost converter, there are two states: the output 
voltage (x1) and the inductor current (x2). As Ψ is function of x1 only, 
hence the chain rule of differentiation becomes:

2

22d I IV V V
dx V V

 Ψ ∂ ∂
Ψ = = + ∂ ∂ 
                      (20)

Then the desired dynamic evolution of the macro-variable can be 
expressed: 
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So,

2

22 0I I IT V V V I
V V V

 ∂ ∂ ∂
+ + + = ∂ ∂ ∂ 

                 (22)

2
0 0

2

1
2

IV IV Vd
V V I I V

L V V

∂
+

∂= − =
 ∂ ∂

+ ∂ ∂ 

                   (23)

Stability proof

Based on Lyapunov function the macro-variable requires that:

21 0; 0; 0
2

dV V
dx
Ψ

= Ψ = Ψ = ΨΨ  
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                 (24)

Results and Discussion
The PV model system has been implemented in Matlab/Simulink 

shown in Figure 9, which includes the PV array, the DC-DC boost 
converter with an MPPT controller connected to a load. The PV 
modules specifications’ are shown in Table 1.The converter circuit 
topology is designed to be compatible with given load to achieve the 
maximum power transfer from the solar panel. The MPPT system 
specification’ used in the simulation is shown in Table 2.
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Figure 8: Block diagram of PV system with synergetic controller.
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To evaluate the effectiveness of proposed MPPT, We consider 
the PV cell with irradiance is 1000W/m2 and temperature is 25°C. 
The simulation results of the output power, the PV panel voltage, the 
output voltage and the PV panel current are shown in Figures10a-10c 
show the duty cycle and the macro-variable.

The photovoltaic system is dependent on the temperature and 
irradiation conditions and the power will be maximum for along 
the variations of temperature and irradiation in the PV panel which 
is giving to input to DC-DC converter. Therefore, we will evaluate 
the robustness of the proposed MPPT according to temperature and 
irradiance variation. In each figure, two different values of temperature 

or irradiance are presented in order to show the robustness (Figures 
11-14).

All the obtained results show that the use of synergetic MPPT 
controller is effective. The SC ensures very fast convergence to the 
MPP and there are no oscillations around the MPP. Moreover it 
provides a high robustness with the variation of the external conditions 
(temperature and solar irradiance).

Conclusion
In this paper, a whole PV system with optimal control strategy 

has been presented. The Synergetic control is formulated and applied 
to the PV system. This system consists of a solar panel, DC-DC boost 
converter, synergetic MPPT controller and an output load. The 
effectiveness and the robustness of the proposed MPPT are proven by 
simulation results.

It is proved using Simulation Matlab/Simulink that the designed 
SC showed good results as it successfully and precisely tracked the 
MPP with a significantly higher efficiency. Hence, synergetic control 
eliminates chattering effects and robust to abrupt change of solar 
radiation and temperature.

L 480 (mH)
R 5 (Ω)
K 1.38e-23 (J/K)
Q 1.6e-19 (C)
Rs 0.18 (Ω)
Rp 360 (Ω)
N 36
T 0.003

Table 2: System specifications.
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Figure 12: Simulation with step irradiance change (1000W/m2, T=25°C).
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In further work, these results will be experimentally validated.
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