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Abstract
A crystalline Nano powders of 3 mol% yttria-partially stabilized (3Y-PSZ) has been synthesized using ZrOCl2 and 

Y (NO3)3 as raw materials by microwave pyrolysis with a TE666 resonant mode at 700-900°C. The frequency of the 
microwave was 2.45 GHz with the maximum power of 10 KW, and a hybrid heating structure was used with insulation 
of porous mullite and SiC aided heaters. For comparison, conventional heating was performed in air at 750°C for 20 
min. The as-synthesized products were characterized by SEM and TEM images, XRD patterns. It was found that 
microwave energy promotes the conversion of tetragonal ZrO2 (t-ZrO2) to monoclinic ZrO2 (m-ZrO2) phase compared 
with conventional pyrolysis. TEM images showed that highly dispersed 3Y-ZrO2 powders with ~23 nm in size were 
obtained by microwave pyrolysis at 750°C for 20 min.
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Introduction
Zirconia (ZrO2) is an important material possessing many excellent 

properties, including high melting point, high hardness and strength, 
high fracture toughness, low thermal conductivity, high chemical 
stability, ionic conductivity, and excellent corrosion and abrasion 
resistance [1,2]. It is thus extensively used in many important areas, 
e.g., functional ceramics, high-temperature and corrosion resisting
components, abrasive and insulating material, dielectric element,
catalysts, and ion exchanger [3,4].

To date, several techniques have been developed to prepare ZrO2 
nanoparticles, including sol-gel, flame spray, combustion, glycothermal 
process, hydrothermal processing, precipitation and other techniques 
[5-10]. Unfortunately, these techniques all suffer from various 
disadvantages, such as strong agglomerates, difficulty in particle size 
control, complex drying procedures, requirement of high energy and/
or long reaction time, and low production efficiency. To overcome 
these drawbacks, it is necessary to develop other alternative techniques.

Microwave method has recently attracted an increasing amount 
of interest [11-15] owing to the advantages, such as cost-effective, 
energy efficient, rapid and convenient method of heating, and results 
in higher yields in shorter reaction times. In this work, 3Y-ZrO2 Nano 
powders were prepared by microwave pyrolysis combined with a co-
precipitation process using ZrClO2·8H2O as the starting material, and 
NH4OH as the mineralizer.

Experimental Procedure
Preparation of 3Y-ZrO2 powders

Commercially available zirconium oxychloride octahydrate 
(ZrClO2·8H2O, purity: 99.2%, Zibo Huantuo Chemical Co. Ltd., 
Shandong, China), yttriumnitrate hexahydrate (Y(NO3)3·6H2O, A.R., 
Tianjin Guangfu Fine Chemical Research Institute, Tianjin, China), 
and ammonia solution (NH4OH, A.R., Xilong Chemical Co., Ltd., 
Guangdong, China) were used in the preparation of the precursor. 
ZrClO2·8H2O and Y (NO3)3·6H2O were used as received and dissolved 

in DI water. The concentration of zirconium ion was 1.0 mol/L, to 
which 3 mol% Y (NO3)3·6H2O was added. 1 M ammonia solution was 
added dropwise in given solution with continuous stirring, adjusting 
its Ph. value at 12-13. After co-precipitation, the precursor solution was 
filtered and washed with ethanol repeatedly until no Cl- was detected in 
the filtrate by an AgNO3 solution. The resulting precursor powder was 
oven-dried at 80°C for 24 h. Subsequently, the dried powder was kept in 
a microwave chamber with the resonant mode of TE666 (WXD20S-07, 
Nanjing Sanle Microwave Technology Development Co., Ltd., Jiangsu, 
China) at 700-900°C for 20 min. The frequency of the microwave oven 
was 2.45 GHz with the maximum power of 10 KW. The temperature 
was monitored by using an infrared radiation thermometer (OI-T6I2-
B-1-type, GOIDSUN, USA) with initial display of 700°C. A thermal
insulation structure based on a hybrid heating mode was well designed 
with the wall material of porous mullite and aided heaters of SiC rods. 
For comparison, 3Y-ZrO2 was also prepared via conventional pyrolysis 
at 750°C for 20 min.

Characterization of 3Y-ZrO2 powders

Phases in the as-prepared product powders were identified by 
powder X-ray diffraction (XRD) analysis (XD-3, Persee, China) with 
Cu Ka radiation (λ=1.5406 Å). Morphologies and microstructures 
were observed by using a field emission electron microscope (SEM) 
(JSM-7001F, JEOL, and Japan) and a transmission electron microscopy 
(HRTEM) (Tecnai G2 F20, Philips Co. Holland).
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Results and Discussion
Microwave pyrolysis behavior

It is known that microwave absorption strongly depends on the 
dielectric loss factor of the material of interest [16]. At low temperature, 
ZrO2 precursor cannot effectively absorb microwaves. However, with 
the help of hybrid heating by SiC aided heaters, heat is transferred 
to the precursor in the low temperature region, heating at this stage 
is analogous to conventional processes. After reaching the critical 
temperature, ZrO2 precursor couples with the electromagnetic field 
and a higher heating rate is obtained due to the increased dielectric loss 
factor [17]. This change is consistent with the heating curve shown in 
Figure 1. In Figure 1, the temperature was well monitored by manual 
control of input powder. Owning to the rapid sintering characteristics 
of microwave sintering, it took only 30 min to reach the temperature 
of 750°C. It was observed that an efficient forward power profile 
requires a high power initial segment, the reflected power increases 
synchronously with input power. After about 4 minutes, the reflect 
power was suitably reduced; thermal runaway could be prevented 
albeit quite fast temperature increase to 750°C. After about 35 minutes, 
the input power of the system decreased as well as reflected power 
concomitantly decreased, but the temperature was kept at 750°C, 
which was due to selective absorbing phenomena, which is the unique 
heating feature of microwave sintering.

The DTA/TG curves of the 3Y-PSZ precursor amorphous powders 
at heating rate 10 k/min in air are shown in Figure 2. An endothermic 
peak at about 94°C is accompanied with a weight loss of 10.5% which 
is attributed to the evaporation of water. The exothermic peak at 305°C 
is attributed to the dehydration of precursors. The second exothermic 
peak at 450°C due to the formation of the tetragonal phase of ZrO2 in 
the 3Y-PSZ freeze dried precursor powders.

X-ray diffraction analysis

As shown in Figure 3, the observed diffraction peaks at 2θ=30.2°, 
35.0°, 50.4°, 58.9°, and 62.9° are associated with -111, -200, -220, 
-311, and -222 plane of t-ZrO2 (JCPDS No. 50-1089). The peaks are 
at around 28.2 and 31.4 correspond to the (-111) and -111 planes of 
m-ZrO2 (JCPDS No. 37-1484). According to the XRD analysis, both the 
3Y-ZrO2 powders obtained by microwave pyrolysis and conventional 
pyrolysis are a mixture of monoclinic and tetragonal phases. As shown 
in Figure 3a, the metastable tetragonal phase is the main phase in the 
powders by CS method when the heating temperature is less than 

900°C, whereas the monoclinic phase of zirconia appears when the 
heating temperature is enhanced to 900°C, the prepared powder is a 
mixture of m-ZrO2 and the t-ZrO2, which is the same with the reference 
[18]. Compared with the CS method, the obtained powders by the 
MP method are multi-phase, and m-ZrO2 with t-ZrO2 are coexisted 
at every heating temperature, as shown in Figure 3b. It is found that 
the intensity of the tetragonal phase reflection peaks is greater than the 
monoclinic phase peaks at 700°C, the relative peaks of tetragonal phase 
decreased with increasing calcinations temperature, which means the 
m-ZrO2 content increased while the t-ZrO2 content decreased. This 
results show that the microwave energy can accelerate the formation 
of m-ZrO2 phase.

Figure 1: Heating cycle and power variation during microwave pyrolysis of 
ZrO2 precursor.

Figure 2: DTA/TG curves for 3Y-PSZ precursor amorphous powders at heating 
rate 10 k/min in air.

Figure 3: X-ray diffraction patterns of 3Y-ZrO2 powders synthesized at different 
temperature by (a) conventional sintering (CS), (b) microwave pyrolysis (MP).
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size was 23 nm. The microwave pyrolysis YSZ powders consisted of 
tetragonal and monoclinic phase. In the microwave field, the stability 
of tetragonal phase was weak and debased during the formation of 
ZrO2.

The results of the XRD, Raman spectra, and SAED show the 
tetragonal ZrO2 formation when the 3Y-TZP freeze-dried precursor 
powders calcined at 773-1273 K for 5 min. Moreover, the RAMAN 
spectrum shows that the tetragonal ZrO2 had already formed in the 
3Y-TZP freeze-dried precursor powders. The crystallization activation 
energy of the tetragonal phase from the 3Y-TZP freeze-dried precursor 
powders when using a non-isothermal method was 169.2 ± 21.9 kJmol-1. 
The crystallite growth morphology parameter (n) and crystallization 
mechanism index (m) were approximated as 2.0. This result means that 
the tetragonal ZrO2 crystallites have a growth mechanism with a plate-
like morphology.
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Conclusion
The 3Y-ZrO2 Nano sized powder prepared by microwave pyrolysis 

was thoroughly investigated. Optimized microwave pyrolysis 
condition is around 750°C for 20 min. The powders were characterized 
by a narrow particle size distribution, high dispersive and the average 

Figure 4: The SEM micrographs of 3Y-PSZ powders by microwave pyrolysis 
at different temperature: 700°C (a); 750°C (b); 800°C (c); 850°C (d); 900°C (e) 
and conventional sintered at 750°C (f).

Figure 5: TEM image (a) and HRTEM image (b) of ZrO2 powders.
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