Synthesis of New Halogen-Containing Norbornene Adducts Based on N-Substituted Imides of 2,3-Dichlorobicyclo [2.2.1] Hept-5-ene-2,3-Dicarboxylic Acids and Hexachlorocyclopentadiene

Yaqub Nagiyev

Nagiyev Institute of Catalysis and Inorganic Chemistry, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan

Corresponding author: Nagiyev Y, Nagiyev Institute of Catalysis and Inorganic Chemistry, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan, Tel: (+99)4505185161; E-mail: yaqub56@mail.ru

Received date: June 22, 2017; Accepted date: May 14, 2018; Published date: May 18, 2018

Copyright: © 2018 Nagiyev Y. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Diene condensation of N-substituted 2,3-dichlorobicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid imides with hexachlorocyclopentadiene proceeds regioselectively through the double bond of dienophile, resulting in the corresponding polychlorinatedcyclic adducts with endo configuration.

Keywords: Double bond; Functional groups; Organic compounds

Introduction

Polychlorocyclic compounds containing functional groups in the side chain have a variety of biological and physiological effects [1-10], are used as flame retardants to increase the fire resistance of polymeric materials [4,10], are of interest as synthones in the purposeful synthesis of many classes of organic and element organic compounds [11-14].

The availability of norbornene derivatives has increased as a result of the improvement of the Diels-Alder reactions and due to the possibility to obtain on their basis a variety of valuable products of synthetic and structure of the synthesized compounds were studied, as well as certain patterns of reactions [15-20].

The N-substituted imidates of 2,3-dichlorobicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid contains reactive groups that make it possible to obtain on their basis a variety of valuable products of fine organic synthesis. In this work, studies are continued in this direction and the results of studying the diene condensation of N-substituted imides of 2,3-dichlorobicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid and hexachlorocyclopentadiene [21]. The reactions were carried out at a molar ratio of the reacting components (diene: dienophile=1:1) (Schemes 1 and 2).

Scheme 1: R=Ph (a), m-NO2C6H4 (b), p-NO2C6H4 (c), 2,4-(NO2)2C6H4 (g), p-CIC6H5 (d), M-CIC6H5 (e), 3,4-Cl2C6H4 (s), 2,5-Cl2C6H4 (s).

Scheme 2: R=Ph (a), m-NO2C6H4 (b), p-NO2C6H4 (c), 2,4-(NO2)2C6H4 (g), p-CIC6H5 (d), M-CIC6H5 (e), 3,4-Cl2C6H4 (g), 2,5-Cl2C6H4 (s).

The composition and structure of the synthesized products were confirmed by IR, 1H NMR spectroscopy and elemental analysis data. The compounds 7 (a-x) obtained are solid crystalline substances. The reactions were carried out at 110-120°C for 8-10 h at a 1:1 dienophile mole ratio. Under similar conditions, the reaction of [4+2]-cycloaddition of hexachlorocyclopentadiene to other substituted 2,3-dichlorobicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid imides 5 (b-g) was carried out. The yield of adducts 7 (a-x) varies within the limits of 78-97%, with the highest yield observed for compound 7 b (97%), and the lowest yield for N-(m-Chlorophenyl) imide endo exo-1,2,3,4,7,8,11,11-octachlorotetracyclo [6.2.1.1.05,10]-decene-2-ene-7,8-dicarboxylic acid (e).

In the IR spectrum of the adduct 7 (a-e), vibrational bands of the substituted benzene ring at 1630-1536; 1790-1730 (C=O), 745-735 (C-Cl) are observed, as well as bands of valence and deformation of the C-H bond vibration (3000, 1440 cm⁻¹). The absorption bands in the region 2950-2880 (δ (=CH)) and 960-820 (δ (C-H)) indicate the presence of a strained double bond in the molecules. In the 1H NMR spectrum of imide 6 (a-b), the protons of the six-membered cycle of the norbornene fragment form a spin system AAA'BB'1С system of aromatic protons.

The five-spin AAA'BB'1С system of aromatic protons.
The resulting heterocyclic compounds are crystalline substances. The chemical composition and structure of N-phenylimide-endo-exo-1,2,3,4,7,8,11,11-octachlorotetracyclo [6.2.1.1.0²,10] decene-2-ene-7,8-dicarboxylic acid are established by elemental analysis and methods of PMR, IR spectroscopy, as well as X-ray diffraction analysis (7a). It has been found that the product 7a obtained has an endo-configuration.

Experimental part

N-Phenylimide-endo-exo-1,2,3,4,7,8,11,11-octachlorotetracyclo [6.2.1.1.0²,10] decene-2-ene-7,8-dicarboxylic acid (a). A solution of 0.546 g (2 mmol) hexachlorocyclopentadiene in 5 ml of toluene was added dropwise to a solution of 0.616 g (2 mmol) of the adduct (7a) in 15 ml of toluene at 110°C for 15 minutes. The reaction mixture was stirred for 10 hours at the boiling point of toluene. The mass was then cooled to 100°C, the precipitate was filtered off, washed with water, and dried in vacuo at 70°C. The yield is 1.05 g (90%). Cinnamonic crystals, well soluble in benzene, toluene, acetone, chloroform, DMF, N-methylpyrrolidone, m.p. 178-180°C. IR spectrum, n cm⁻¹: 1748.1831 (CO), 1114.1385 (C-N); 1122.1144 (NO), 737 (C-Cl). 1 H, δ ppm. 7.31 (Ph); 2.89 (2H6.9); 2.20 and 1.26 (2H2). Found: C, 41.29; H, 1.85; Cl, 49.81; N, 2.45. C₂₀H₁₈Cl₂N₂O₂. Calculated, % C, 41.31; H, 1.89; Cl, 48.88; N, 2.41.

N-(m-Nitrophenyl) imide endo-exo-1,2,3,4,7,8,11,11-octachlorotetracyclo [6.2.1.1.0²,10] decene-2-ene-7,8-dicarboxylic acid, Acid (b). Yields 1.13 g (91%) m.p. 199-201°C. IR spectrum, n cm⁻¹: 1740.1830 (CO), 1112.1384 (C-N); 1120.1140 (NO), 736 (C-Cl). 1 H, δ ppm. 7.41, 6.54 (Ph); 2.89 (2H6.9), 1.93 and 1.51 (2H2). Found: C, 38.34; H, 1.60; Cl, 45.37; N, 4.47.

N-(p-Chlorophenyl) imide endo-exo-1,2,3,4,7,8,11,11-octachlorotetracyclo [6.2.1.1.0²,10] decene-2-ene-7,8-dicarboxylic acid, Acid (c). Yield 1.24 g (95%) m.p. 145-147°C. IR spectrum, n cm⁻¹: 1753-1705 (C=O), 1342 (=N-), 839 (CH₃), 735 (C-Cl). 1 H, δ ppm. 6.90 (Ph); 2.82 (2H6.9), 1.92 and 1.50 (2H2). Found: C, 37.31; H, 1.37; Cl, 54.22; N, 2.19. C₂₀H₁₆Cl₂N₂O₂. Calculated, % C, 37.21; H, 1.40; Cl, 54.26; N, 2.17.

Conclusion

Diene condensation of N-substituted imides of 2,3-dichlorobicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid with hexachlorocyclopentadiene proceeds regioselectively over double bond of dienophile.

The resulting polychlorinated bicyclic adducts have an endo-configuration.

The reaction of hexachlorocyclopentadiene with N-substituted 2,3-dichlorobicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid imides proceeds according to a classical type of diene condensation "diene-acceptor, dienophile-donor".

The X-ray diffraction analysis has shown that the obtained product has endo-configuration.

A crystalline structure of the resulting heterocyclic compounds has been established.