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Some insects have evolved over millions of years to produce fantastic 
biomaterials and sometimes they exceed manufactured materials with 
extraordinary characteristics. One of these biomaterials is spider silk 
(SS) that contains large proteins. SS-fibers are as tough as steel and some 
SS-fibers have elasticity near caoutchouc [1,2]. When one combines 
their fantastic characteristics, SS show double or even triple toughness 
of manufactured-fibers such as Kevlar or Nylon. In addition, SS shows 
(I) passive-inflammation, (II) it is inactive for allergic reactions, (III) it 
is completely biodegradable-material, (IV) it is hypoallergenic and (v) 
it is antimicrobial at ambient conditions [3]. These properties present 
SS as a future biomaterial. Therefore, this article draws attention to the 
importance of SS for different applications and shows the structure-
function close relation between the highly repetitive (HR) SS-proteins 
with the corresponding conformational alteration to strings from the 
initial solution form. This information is decisive because one has to 
know the mechanism (s) how this alteration occurs and to understand 
the intrinsic characteristics of SS-fibers. In addition, it is important to 
know the highly sophisticated assembly techniques of silk proteins. 
There are different types of SS-webs (SSWs); among the most famous 
is the orb-web (OW) that contains different sorts of SS [4]. In general, 
components of orb-web are made of very robust SS. The major 
ampullate (MA) glands produce two different types of protein. As a 
particular case, MA-SS can be utilized as roping thread that can help to 
escape predators. For example, the catch winding of an OW contains 
strings with one sort of protein that is generated in the gland of spider 
as flagella form (Flag). Flag-SS has high degree of elasticity about three 
hundred percent which is completely enough to squander the internal 
energy of prey. The web scaffolding joint-points are well welded to 
external supports (such as trees for example) through advanced silk 
binder contain special proteins created in the insect [5,6].

The Structure of Spider Silk 
Essentially, SS contains special proteins, which consists of huge 

amounts of hydrophobic-amino acids (for example glycine and/or 
alanine) and nonpolar amino acids, and there is no tryptophan [7]. As it 
is illustrated in Figure 1A, SS-protein exhibits a chemical composition 
very close to amino acid with highly repetitive amino acid sequences 
that composes about 90% of the entire SS-protein (Figure 1B). In 
addition, there are short polypeptide stretches having nearly 10-50 
amino acids. Each repeat of them has functional characters leading to 
the wonderful mechanical properties of SS-threads. In particular, MA-
SS contains up to four typical oligopeptide motifs that suffers different 
repetition as {i} GGX (X=A, S or Y) {ii} (GA)n/(A)n, {iii} GPGGX/
GPGQQ and {iv} regulated-space successions that have charges on 
their amino acids (Figure 1C) [5,6]. Scheibel et al. [8] have shown that 
some repetitive domains and some non-repetitive domains are present 
at the ends of protein’s series [8]. The non-repetitive termini control 
the processes of the proteins assembly of SS-protein into fibers [9]. 
Rising et al. have shown that the regions comprise some hundreds of 
amino acids and they reported that well located and defined tripartite- 
and tripartite-forms are present in sol [9].

Several authors [10,11] reported that these domains result in some 
inter-molecular disulfide bonds, which, under oxidizing conditions, 
can stabilize dimers and multimers. As a consequence, several papers 

[10,11] reported that these domains can lunch and appoint texture of 
SS-proteins [10,11]. 

The Texture of Spider Silk 
Dicko et al. [12] have shown that assembly process cannot initiate 

with globular folded protein monomers. It can start essentially with 
unfolded proteins at very high concentrations [12]. In order to keep 
and maintain high concentrations of protein, Hijirida et al. [13] have 
reported that several mechanisms should be necessary to keep these 
high concentrations as high as up to fifty percent w/v [13] inside the 
insect. This includes lyotropic liquid crystallinity, glycosylation of the 
external superficies of the tucked SS-proteins and period split persuade 
by a polyol or by a phospholipid surfactant. SS transforms to texture 
when starting the spinning duct and the silk form turns H2O-resistable 
[14]. Figure 2 illustrates this situation. Different conditions such as 
pH, ionic concentration, water content, etc. should be controlled to get 
good and efficient assembly. This demands bi-stable bending processes 
of the concerned protein and firm control of the surrounding states.

Mimicking Nature-Recombinant Spider Silk
Authors have used different techniques for recombinantly 

producing SS-proteins, because recombinant production of ample 
quantities of SS-proteins is crucial to clarify and to understand their 
assembly behavior and their structure [15-18]. It is very complicated 
to characterize the exact cDNA successions of a SS-gene because of its 
highly repetitive character of individual SS-molecules. The conversion 
of premier or fractioned silk genes to steward of some microorganism 
bacteria can lead to get recombinant SS-proteins. However, bacteria are 
not the suitable host for this task because the genes have large size [19]. 
In addition, when one compares the various codon uses of spiders with 
bacteria, one can note that the recombinant creation of SS-proteins in 
bacteria is more hard and difficult [20]. 

Artificial Spinning of Spider Silk
It is worth pointing out that researchers will be able, in the near 

future, to understand and test the texture of SS-threads in a functional 
in vitro weaving technique due to the availability of recombinant SS-
proteins. Figure 2 illustrates that the produced SS-string looks like 
natural silk in its mechanical properties, fine-, and chemical-structure 
[21]. In order to adapt the developed spinning machinery of spiders, 
different parameters should be considered: 
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First, in addition to the phase separation process in the spinning 
duct and the protein composition of the spinning dope, one should 
consider several mechanical parameters silk assembly. For example, 
spiders, in nature, use the weight in case of curling and draw the thread 
with the hind legs out of the spinning wart [22]. In laboratory, scientists 
copied this drawing process by forced silking of captive spiders. It is 
worth noting that researcher have reported important differences in 
thread diameters, ductility and resilience depending on temperature 
and spinning speed [23]. Several papers reported that SS obtained at 
higher groggy quickness have a little bit more output. However, they 
are less extendable and more feeble than SS interweaved at reduced 

speeds. In order to weave recombinant spider silk proteins for scientific 
objectives, one should consider some aspects: First, researchers can 
utilize wet-spinning processes [24] and they can use silicon tinny-
spinnerets (on microscale) some meters of insect or SS-string. These 
processes will lead to wet-spun silks with radius with ten times more 
than the radius of normal SS, which lowers the mechanical properties. 
Researches can use special posts-pinning techniques that can lead 
to silks having better radius [25]. In all cases, so far, the mechanical 
characteristics gained by synthetic weaving techniques are by far 
thinner than that of normal SS [26]. 

 

Figure 1: (A) Comparing three well-known proteins amino acids to SS. (B) Proposed pattern of the constructing of a major ambulate (MA) SS-protein. 
(C) Amino acid motifs of SS-proteins. Amino acids present in MA and Flag silk are restored with their delusive composition and their influence on the 
ultimate characteristics of the string.
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SS-proteins, in nature, are exclusively transform into SS-threads. 
It is possible, in vitro, that SS-proteins transform in other two- or 
three-dimensional forms. One can notice from the images of electron 
microscopy different forms as: Capsule, sphere, thread and nano-fibrils, 
in addition to a hydrogel and a film (image) formed by recombinantly 
generated tailored SS-protein [27] 

One can exceed nature when using SS in three dimensions. Figure 
3 shows SS-protein with three dimension microscopic structures. 
Recently, scientists attempt to use SS-protein as biopolymer (novel 
biomaterial) for different applications. For example, researchers can 
prepare SS-films from a watered SS-sol [27]. Here, researchers can 
pour a solution of SS with suitable solvent such as water and let it to 
evaporate. Then the SS-protein textures on the surface and shape a 
transparent, robust diaphragm. One can tailor the thickness of films 
from some nanometers up to different µm’s having several mechanical 
and chemical properties. This can occur with good choice of 
temperature, solvent and surrounding conditions. Here, the produced 
films can give secondary and tertiary structure formation of these 
proteins depending on preparation conditions. Several papers [27-30] 
reported that SS-proteins of MA are intrinsically unfolded in aqueous 
solution. However, if one prepares a SS-film, the proteins rapidly will 
alter to a spiral arrangement and post-handling of the diaphragms with 
non-polar solvents such as methyl alcohol can lead to more structural 
rearrangements of SS-protein. This can increase the beta-sheet content 
dramatically [27-30]. Moreover, SS, in vitro, can further able to self-
assemble into small nano-fibrils upon developing, at room temperature 
for some days, in potassium phosphate buffer [28-31]. One can 
structurally compare the obtained SS-fibrils with amyloid fibrils. 
Interestingly, testing the composition-function correlations of SS-
proteins in the near future will explain the reason of extreme toughness 
of SS-threads, in addition it will help to tailor and even design new 
polymeric biomaterials. In summary, to discover the secrets behind the 
extraordinary toughness of SS-threads researchers should take more 
deep steps to analyze the structure-function relationship of SS-proteins 
which will also help to tailor, engineer and design novel bio- and 
polymeric-materials. Moreover, the control of SS-assembly will help 
researches to obtain new biomaterials tailored to have characteristics 
under desire upon the market demand.
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