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Abstract
The discovery of diabetes mellitus (simplified as “diabetes”) could be traced back to 1500 B.C. The first detailed 

description appeared in 1800, but in the last few decades, the prevalence of diabetes increases dramatically. Till 
present, according to WHO’s report, 247 million people worldwide have been diagonized Diabetes, among which 
3.47 million died from diabetes. Thus, WHO projects that diabetes will become the 7th leading cause of death in 
2030. The typical feature of diabetes is hyperglycemia as a result of metabolic disorder. As the disease progress, 
complications develop including macrovascular and microvascular abnormality, leading to multiple organ failure and 
mortality. Apart from diabetes-associated vascular diseases, numerous studies have documented the association 
between hyperglycemia and cancer. There are three main types of diabetes: (1) type 1 diabetes mellitus (T1DM) 
in which pancreatic β cell death by immune attack; (2) type 2 diabetes mellitus (T2DM) in which pancreatic β cells 
fail to produce sufficient amount of insulin; and (3) gestational diabetes which occurs in pregnant women due to 
high demand for insulin production. Type 2 DM accounts for 80-90% of diabetes and obesity has been identified as 
a strong and modifiable risk factor in type 2 DM. In this review, we first provide a general introduction of T2DM in 
the aspects of diagnosis, pathogenesis and clinical characteristics of T2DM. We will focus on how obesity has the 
adverse impact on insulin resistance, pancreatic β cell death and dysfunction and the development of T2DM. Next, 
we will summarize the animal models of T2DM including their advantages and drawbacks when compared to their 
clinical relevance. Finally, we will summarize the interventions that have been applied to treat obesity and T2DM and 
the remaining problems.
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General Introduction of T2DM
Definition and diagnosis criteria of T2DM

Hyperglycemia is the main feature of diabetes, thus, plasma glucose 
level remains the solo and golden standard in the diagnosis of the 
disease. According to WHO’s recent recommendations, the threshold 
of glucose level for diagnosis of diabetes, impaired glucose tolerance 
(IGT) and impaired fasting glucose (IFG) are summarized in Table 1. 
One whose fasting glucose level exceeds 7 mmol/l or 2-h oral glucose 
tolerance test (OGTT) exceeds 11.1 mmol/l is diagnosed as diabetes. 
Different from that, diagnosis of IGT and IFG require both criteria.

Pathogenesis of T2DM

In addition to diet and life style, both environment and genetic 
factors contribute to the manifestation of T2DM. Up to date, more 
than 36 genes have been identified to contribute to T2DM, most of 
which are involved in pancreatic β cell function [1]. As a result of 
diet and life style changes, obesity develops and becomes a strong 

independent risk factor in T2DM. Despite the etiological factors are 
diverse and varied, the underlying pathogenesis of T2DM remains the 
same: insulin resistance, β cell hyperplasia and insulin insufficiency. 
Physically, plasma level of glucose increases after diet, which stimulates 
pancreatic beta cell to secrete insulin. Insulin, on one hand promotes 
glucose uptake and metabolism in the liver, skeletal muscle and fat 
tissues, on the other hand, enhances glycogen synthesis, leading to 
glucose homeostasis. In pathological conditions such as obesity, excess 
body fat, particularly visceral fat, releases large amount of free fatty 
acid into blood. The free fatty acid interferes with insulin signaling by 
(1) being absorbed by liver and skeletal muscle and thus becomes the
main fuel for energy production; and (2) increased triglyceride storage
in liver and skeletal and inhibition of glycogen synthesis. This reduced
effect of liver and skeletal in responses to insulin is so called “insulin
resistance”. The scheme of insulin resistance is illustrated in Figure 1.

To overcome sustained high level of glucose in blood, pancreatic 
β cells have to produce more insulin. The compensation response 
consists of both insulin production and increased β cell number so 

Diabetes Impaired glucose tolerance 
(IGT)

Impaired fasting 
glucose (IFG)

Fasting ≥7 mmol/l <7 mmol/l 6.1-6.9 mmol/l

Plasma (126 mg/
dl) (126 mg/dl) (110-125 mg/dl)

Glucose
2-h 
OGTT*

11.1 
mmol/l 7.8-11.1 mmol/l <7.8 mmol/l

(200 mg/
dl) (140-200 mg/dl) (140 mg/dl)

*2-h OGTT: plasma glucose level at 2 hours after oral ingestion of 75 g glucose

Table 1: Plasma glucose level in the diagnosis of diabetes.
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called hyperplasia. Evolutionally, β cell replication occurs at high rate 
in neonatal period and grown young adult but decreases in adult stage 
[2]. To meet the increasing requirement of insulin, adult β cells could 
proliferate and generate new β cells for insulin production. Although it 
is still controversial whether β cell neogenesis or other pluripotent stem 
cells may also serve as sources for the formation of β cells, [3] by using 
lineage tracing technologies, more and more evidence collectively 
indicate that self-replication of pre-existing β cells remain the main 
mechanism in β cell hyperplasia [4-7].

As the pathological situation progresses, exhausted and 
dysfunctional β cell fail to produce adequate insulin in response to the 
metabolic demand. Following β cell hyperplasia, the state, of decreased 
insulin secretion, is namely “insulin sufficiency” that leads to diabetes.

Clinical features of T2DM

Hyperglycemia appears in the early stage of T2DM. Although 
mainly displayed in T1DM, features of excess thirst (polydipsia), 
frequent urination (polyuria), increased hunger (polyphagia) and loss 
of body weight can be also seen in T2DM in severe status. As most 
pathological progress involves in blood vessels of multiple organs, 
T2DM patients have multifaceted complications which are summarized 
below.

Macrovascular abnormality: Diabetes accounts for 50% of 
mortality in patients with cardiovascular disease [8,9]. Hyperglycemia, 
free fatty acid, dyslipidemia together with other factors may promote 
endothelium injury and platelet adhesion and aggregation to injured 
endothelium, leading to endothelial cell activation, inflammatory 
cell infiltration and then atherosclerotic plaque formation. The 
atherosclerotic plaques in T2DM patients do not differ from that of 
non-T2DM patients but they are more extensive.

Microvascular abnormality: Microvascular changes can be seen in 
almost all the tissues in T2DM, however, the clinical features that are 
frequently seen are retinopathy, nephropathy and neuropathy.

a.	 Diabetic retinopathy: Approximately, about one third T2DM 

patients develop retinopathy and the prevalence increases 
with the progression of diabetes and hypertension [10]. In 
American, retinopathy-induced blindness is the main cause 
of blindness than any other cause. Retinopathy is usually 
graded into background and proliferative retinopathy 
[11]. Although it is not clear how retinopathy develops, 
endothelial cell damage, thickening of basement membrane, 
tiny hemorrhages and microaneurysms are characteristic of 
background retinopathies. In progress, neovascularization 
and fibrovascula proliferation may occur in the progression of 
background retinopathy toward proliferation retinopathy. The 
new capillaries are more fragile with more leakage. It is only 
when pathological changes encroach on the macula that visual 
impairment and blindness occur.

b.	 Diabetic nephrology: Diabetic nephrology affects about 33% of 
T2DM patients [12]. The earliest clinical sign of nephropthy in 
T2DM is the detection of small amount of proteins in the urine 
(termly microalbuminuria). Over decades, larger amount of 
proteinuria develops, leading to chronic renal failure.

c.	 Diabetic peripheral neuropathy (DPN): DPN affects 
approximately 50% of diabetic patients, therefore, it becomes 
the most prevalent complication of diabetes [13]. Because of 
pathological change in the nerve, patients lose sensation of 
temperature but sense chronic pain, more severely recurrent 
foot ulceration. Amputation may be taken in pain relief and 
prevention of further ulceration and infections.

Diabetes-associated carcinoma: The diabetes-, obesity-related 
cancer was noticed in 1934. In these decades, extensive studies have 
been performed to interpret whether and how cancer occurs in 
response to diabetes, hyperinsulinmia and hyperglycemia. Table 2 
provides an overview of the incidence of cancer in patients with obesity 
and diabetes. Although the mechanisms are not fully understood yet, 
the dysregulated insulin-insulin growth factor 1 (IGF-1) pathways and 
specific hormones have been demonstrated to play major roles in the 
occurrence of cancer in diabetes patients.

The Impact of Obesity on T2DM
The positive association between obesity and the prevalence 
of diabetes

As a consequence of lifestyle changes, obesity becomes epidemic 
worldwide. The definition of overweight and obesity directly comes 
from body-mass index (BMI) while waist circumference serves as 
a reference. Definition of normal weight, overweight and obesity is 
shown in Table 3. To be addressed, the obesity criteria may slightly vary 
from ethic races. For example, in Asians, BMI 23 kg/m2 can be used 
to define overweight and BMI 25 or 27 kg/m2 can be used to indicate 
obesity. The worldwide prevalence of obesity is summarized in Figure 
2. Accumulated evidence has identified that obesity is an independent 
risk factor in cardiovascular disease, [14-16] diabetes, [16-20] and 
hypertension [20,21]. Population-based studies consistently point out 
the intimate association between obesity and diabetes as a function of 
prevalence (Figure 3).

The molecular mechanisms underlining the adverse effect of 
obesity on T2DM

From a global view, adipocytes in obese subjects not only disturb 
glucose metabolism but also illicit inflammation cascade by producing 

 

Figure 1: Insulin resistance – imbalanced usage of glucose and free fatty 
acid. Upon diet, glucose level increase in the blood, which sensitize pancreatic 
β cells to secret insulin. Insulin promotes glucose absorption for energy 
production and storage as glycogen in liver and skeletal muscle. In the situation 
of overweight and obesity, larger amount of free fatty acid is released from 
adipocytes into circulation. They replace glucose to be uptaken by liver and 
skeletal muscle for energy production and stored as triglyceride. Moreover, free 
fatty acid interferes with insulin action on liver and skeletal muscle for glucose 
usage. The sustained high level of glucose continues to stimulate β cells for 
insulin production to compensate insulin resistance. As insulin resistance 
progresses, β cells fail in insulin production due to exhaustion and dysfunction.
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Type of study Study size Overall incidence of cancer or findings Cancer subtype
Zhang et al. [79] cohort 
study 7,950 T2DM subjects 108.36/105 subjects in men; 870.2/105 subjects in women Pancreatic cancer liver cancer; kidney 

cancer breast cancer
He et al. [80]
Meta-analysis 2,596,856 T2DM Patients 66.68-84.51 per 100,000 person-years Bladder cancer

Yang et al. [81]
Meta-analysis

643,683 DM patients; 4,819,656 
non-DM patients

Increased risk of cancer in DM patients compared to non-DM 
patients Bladder cancer

Adami et al. [82]
Cohort study 153, 852 T2DM patients 819 incident cancers in 1-24 years Primary liver cancer, biliary tract cancer

Chari et al. [83]
Cohort study 2122 diabetic patients 1% subjects diagnosed cancer in 3 years Pancreatic cancer

Redaniel et al. [84]
Cohort study 52,657 T2DM female patients A 29% overall cancer risk in DM patients; Positive association 

between diabetes and breast cancer Breast cancer

Park et al. [85]
Retrospective study

1213 men in which 408 subjects 
were obese Positive association between obesity and cancer Prostate cancer

Larsson et al. [86]
Meta-analysis 11,079 subjects Obese persons with increased risk of cancer Liver cancer

Olsen et al. [87]
Meta-analysis 28 studies Positive association between obesity and cancer Ovarian cancer

Key et al. [88]
Prospective study

624 obese subjects and 1669 
controls Positive association between obesity and cancer Breast cancer

Table 2: Association between obesity, diabetes and cancer.

 

Figure 2: Worldwide prevalence of obesity (BMI ≥ 30 kg/m2) in 2009. Adapted from Anon (2005) OECD Factbook; Xi et al. [76].

adipokines such as resistin and inflammatory cytokines such as TNF-α, 
monocyte chemoattractant proteins 1 (MCP-1) and interleukins. In this 
section, detailed overview is provided to understand the pathological 
machinery of obesity in T2DM.

Obesity and the fate of pancreatic β cells: In obesity, adipocytes 
produce and release huge amount of free fatty acid (FFA). Prolonged 
exposure of FFAs to β cells inhibits insulin synthesis [22] and impairs 
conversion of proinsulin to insulin [23,24]. In parallel, overloading 
FFAs to β cells promotes ER stress as evidenced by activation of ATF6 
and XBP-1 and CHOP up-regulation. Exposure of high glucose and 
FFAs increases reactive oxygen species (ROS) production and leads 
to mitochondria dysfunction in β cells [25,26]. Resistin is specifically 

expressed and secreted by adipocytes, whose expression is negatively 
regulated by β cells and by activation of PPAR ɤ [27,28]. Resistin 
antagonizes insulin action and reduces glucose uptake in peripheral 
tissue [28,29]. Apart from its negative effect on metabolism, it 
increases transcription of several inflammatory cytokines such as 
IL-1, TNF-α in an NF-kB-mediated fashion [30,31]. Furthermore, it 
upregulates intercellular chemotactic molecule-1 (ICAM-1), vascular 
cell-adhesion molecule-1 and CCl12 expression on endothelial 
cells, leading to enhanced recruitment of leukocytes [32]. Leptin, a 
hormone secreted from adipocytes, restricts food intake and enhances 
energy consumption. Moreover, it is involved in the inhibition of 
insulin synthesis and secretion. The net effect of leptin tends to 
adapt glucose homeostasis to the amount of body fat. Released by 
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adipocytes, transforming growth factors (TGF-β1) inhibits insulin 
transcription via TGF-beta/Smad3 axis [33,34]. TGF-β1, together 
with resistin and inflammatory cytokines TNF-α, plasminogen 
activator inhibitor-1 (PAI-1) and MCP-1 produced by adipocytes, they 
stimulate inflammation in both NF-kB dependent and independent 
manners [26,35-37]. Adipocytes also produce adiponectin that has 
beneficial effect on insulin release and promote β cell survival [38,39]. 
Unfortunately, adiponectin secretion is dramatically reduced in obesity 
[40]. Ultimately, β cells are subjected to dysfunction and death. To be 
noted, different from these proinflammatory cytokines, IL-6 produced 
by adipocytes may have dual effects on β cells. Upon engagement 
of IL-6 to its receptors containing IL-6R and gp130, activation of 
Janus-associated kinases (JAK) and phospholipase C (PLC)-inositol 
triphosphate (IP3) pathways has been reported, which is associated 
with inflammation and enhanced glucose-stimulated insulin secretion, 
respectively [41-44]. Thus, its function remains controversial. The 
description of link between adipocytes and β cells is illustrated in 
Figure 4.

To understand the pathological process of T2DM in context of 
obesity, we have to keep in mind that (1) adipocytes are not the only 
source of cytokine production. For instance, immune cells as well as β 
cells are reservoirs in cytokine production; (2) the effects of adipokines 
and cytokines could be different from tissue to tissue, organ to organ 
and low concentration to high concentration; and (3) The molecular 
basis of T1DM and T2DM is in large difference. Cytokines-promoted 

NF-kB plays a major role in β cell apoptosis in T1DM. However, 
FFAs-induced ER stress and β cell apoptosis does not require NF-kB 
activation.

Obesity and the fate of hepatocytes: Glucose homeostasis is 
tightly controlled by three factors: (1) insulin secreted from pancreatic 
β cells; (2) glucose uptake by peripheral tissue and liver; and (3) 
regulation of hepatic glucose output. Therefore, hepatocytes are key 
players in glucose homeostasis. Before we discussed the adverse effect 
of obesity on peripheral tissue such as liver, we briefly illustrated the 
general action of insulin on cells. Following the binding of insulin to 
insulin receptor that is consisted of 2 α subunits and 2 β subunits, 
the complex phosphorylates insulin receptor substrates proteins 
(IRS proteins) at tyrosine residues. The effectors downstream of 
IRS proteins are phosphoinositide 3-kinase (PI 3-kinase), p42/p44 
mitogen-associated protein kinase (MAPK), protein kinase C and a 
complex of proteins including cbl, caveolin and flotillin. These effectors 
facilitate gene transcription that regulates glycogen synthesis, glucose 
uptake, lipolysis, protein synthesis, cell proliferation, differentiation 
and survival. Moreover, as a very important function in response to 
insulin, glucose transporter 4 (Glut4) are transferred from intercellular 
compartment to cell membrane for glucose uptake. Of importance is 
the enhanced Glut4 mobilization to cell membrane in peripheral cells 
for its role in glucose uptake [45].

When obesity occurs, increased influx of FFAs to hepatocytes is 
oxidized for energy assumption and stored as triglyceride in liver. The 
fatty liver produces huge amount of very low density lipoprotein (VLDL), 
glucose, C-reactive protein (CRP), PAI-1, fibrinogen and coagulation 
factors, which are related to T2DM-associated cardiovascular 

Table 3: Classification of overweight and obesity.

Category BMI (kg/m2)
Underweight <18.5

Normal weight 18.5-24.9
Overweight 25.0-29.9

Obesity ≥30
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Figure 3: The percentage of diabetes in different categories of BMI. (A) In 
Chinese populations and Americans in 2009. Adapted from Mokdad et al. 
JAMA, 2003 [19] and Yang et al. N Engl J Med 2010 [77]. (B) In Austrian 
population in 1981 and 2000. Adapted from Dustan et al Diabetes Care 2002 
[78].

 

Figure 4: Link of adipocytes and pancreatic β cells. FFAs released by 
adipocytes suppress insulin synthesis and conversion of proinsulin to insulin, 
induce mitochondria dysfunction with increased ROS production and promote 
ER stress. Adipocytes produce proinflammatory cytokines including PAI-1, 
TNF-α, and MCP-1 and inflammatory adipokine resistin. TGF β1 not only inhibits 
insulin transcription but also participates with proinflammatory cytokines and 
resistin in inflammation. The cytokines-mediated inflammation could be both 
NF-kB dependent and independent. Leptin reduces insulin synthesis. Different 
from other adipokines and cytokines, adiponectin protects β cell death and 
stimulates insulin release. The role of IL-6 seems to have double sword effects 
that wait for further investigation.
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complications. Moreover, FFAs repress Glut4 transcription and gene 
expression, resulting in reduced glucose uptake [46,47]. TGF-β1 
released from adipocytes triggers epithelial mesenchymal transition 
(EMT) and apoptosis, resulting in reduced glucose uptake and 
development of liver fibrosis and cancer [48,49]. Proinflammatory 
cytokines from adipocytes further accelerate hepatocyte apoptosis. 
Resistin interferes with insulin signaling on hepatocytes, resulting 
in reduced glycogen synthesis. Similar as FFAs, resistin stimulates 
hepatocytes to produce more apoB, leading to increased production 
of VLDL and LDL, accumulation of lipid content in hepatocytes and 
formation of steatosis. In addition, it could modulate hepatocyte stella 
cell proliferation, migration and collagen I expression, which may 
contribute to liver fibronosis [50]. Leptin, at physically level, binds to its 
receptors on hepatocytes and induces insulin-like signaling pathways 
such as stimulating glycogen synthesis [51,52]. Adiponectin maintains 
its beneficial effect hepatocytes by inhibition of SREBP1 expression and 
lipogenesis, prohibition of hepatic gluconegenic enzyme expression 
and thus reduction of endogenous glucose production and protection 
of hepatocytes from FFAs-induced apoptosis [53-56]. The effects of 
adipocytes on hepatocytes are demonstrated in Figure 5.

Obesity and other peripheral tissues: Similar as hepatocytes, 
impaired glucose uptake is seen in peripheral tissues such as skeletal 
muscles due to reduced glucose transporter GLUT4. The increased 
influx of FFAs to these cells results in fatty tissues due to triglyceride 
accumulation, ROS production and inflammation.

Animal Models Related to Obesity and T2DM

So far, we have delineated the pathogenesis of obesity on T2DM. In 
this section, we will summarize the animal models developed to study 
obesity and T2DM in Table 4. As you may notice from the table, the 
gap exists between animal models, obesity and T2DM patients. More 
specifically, partially due to short life span, animal models could not 
represent the diabetes-related complications, the evolution of β cell 
dysfunction and failure and the strong adverse impact of obesity on β 
cell. These also reflect the complexity of obesity and T2DM in human 
subjects.

Therapeutic Interventions of Obesity and T2DM
In the last section, we will discuss the interventions that have been 

carried out in the treatment of obesity and T2DM. Up to date, the main 
treatments include control of diet, lifestyle improvement, exercise, 
anti-diabetic medicines and insulin injection. On top of that, recently, 
gastrointestinal bypass has been applied more and more widely to obese 
subjects. Hereby, we focus on medications and surgeries interventions.

Anti-obesity medications

Sibutramine: Sibutramine inhibits serotonin-nonadrenaline 
reuptake, promotes the feeling of satiety and decreases caloric uptake.

Orlistat: Orlistat is a potent gastric and pancreatic lipase inhibitor 
and reduces body weight. Nevertheless, its gastrointestinal side effects 
such as steatorrhea have been reported.

Rimonabant: It is by far, the first endocannabinoid CB1 receptor 
antogonist. Except weight loss, it decreases triglyceride level but 
increases HDL-cholesterol [57]. It was forced to be withdrawn in the 
United States for its severe side effect, i.e., the psychiatric problems.

Metformin and thiazolidinediones: AMP-activated protein 
lipase (AMPK) is a key regulator in glucose and energy homeostasis. 
It is ubiquitously expressed in tissues and organs. Activation of 
AMPK inhibits lipid and glucose metabolism via its regulation of 
enzymes involved in the metabolism. In details, (1) it decreases fatty 
acid ad cholesterol synthesis by inhibition of ACC1 and HMG-CoA; 
[58,59] (2) it inhibits ACC2 to stimulate fatty acid oxidation; [58] 
(3) it inhibits lipolysis in adipocytes; [60] (4) it up-regulates GLUT4 
expression and thus enhances its translocation to cell membrane for 
glucose uptake; [61] and (5) it prohibits hepatic gluconeogenesis by 
suppressing glucose-6-phosphatase (G6Pase) [62]. Both Metformin 
and thiazolidinediones have been shown to activate AMPK pathway, 
resulting in improved glucose homeostasis. Metformin also reduces 
body weight possibly via its regulation of ghrelin secretion, which acts 
as a hunger-stimulating peptide [63]. By contrast, thiazolidinediones 
increases body weight.

Glycogen-like peptide 1(GLP-1) and GLP-1 agonist: GLP-1 is 
secreted from intestinal cells in response to nutrient uptake. It augments 
glucose-stimulated insulin secretion and reduces body weight by 
promoting satiety and decreasing caloric uptake [64]. Exenatide and 
liraglutide belong to GLP-1 agonist and share common features of GLP-
1 in stimulation of insulin secretion after meal, suppression of glycogen 
release during meals, reduction of appetite and reduces fat content in 
hepatocytes [65,66]. Except its positive action on insulin secretion, 
increased β cell regeneration was also observed in rodents treated with 
GLP-1 mimetic peptide. Recent study of incretin therapy on diabetes 
patients has reminded us to stay cautious in incretin application. In 
this study, they did not detect human β cell replication when cultured 
with GLP-1. By contrast, because of GLP-1 receptor expression on 
endocrine and exocrine cells, the deleterious effect on the exocrine cells 

 

Figure 5: The impact of obesity on hepatocytes. This figure represents the 
adverse effects of adipocytes on hepatocytes. Influx of FFAs to hepatocytes 
result in reduced glucose uptake via impaired GLUT4 translocation, reduced 
glycogen synthesis and increased production of apoB-containing lipoproteins 
and accumulation of triglyceride. FFAs also stimulate inflammatory proteins 
and coagulation factors that increase the risk of vascular diseases. TGF-β1 not 
only participates in fibrosis, but also potentiates other cytokines in inflammation. 
Resistin facilitates FFAs in lipoprotein and glucose metabolism whereas Leptin, 
adiponectin and IL6 exert protective effects on hepatocytes.
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Models Animal 
species Pathogenesis basis phenotypes Possible drawbacks

Streptozotocin in combination 
of fat diet [89,90] Mouse, rat Induced β cell damage Hyperglycemia; obesity; reduced insulin 

secretion
Severe β cell damage and high 
mortality

Ob/ob (always in combination 
with high fat diet) [91] Mouse Leptin deficiency obesity; Hyperglycemia and hyperinsulinmia; 

Developed peripheral neuropathy No insulin insufficiency

DB/DB [92] Mouse Leptin receptor deficiency obesity; Hyperglycemia and hyperinsulinmia; 
Developed peripheral neuropathy

β cell hyperplasia; No insulin 
insufficiency; reduced life span

Zucker (fa/fa) [93] Rat Leptin receptor deficiency Body weight increase; Insulin resistance No obvious hyperglycemia
KK-Ay (always in combination 
with high fat diet) [94] Mouse A glycoprotein gene mutation Obesity; hyperglycemia; Insulin resistance; 

islet cell hyperplasia

Goto Kakizaki (GK) [95,96] Rat Highest level of glucose challenge 
over many generations

resistance and impaired secretion; renal 
lesion, retina abnormality and nerve changes 
comparable to T2DM omplications in human

relatively slim; no decreased β cell 
mass

NSY [97] Mouse Derived from NOD mice with 
spontaneously developed T2DM

Mild insulin resistance; impaired insulin 
secretion No obesity; gender difference

OLETF [98] Rat Selective for glucose tolerance Obesity; Impaired glucose tolerance; 
Developed non-alcoholic fatty liver disease

Genetic variance that may have no 
causal relationship to diabetes itself

Irs1-/- Irs3-/- [99,100] Mouse Deficiency of insulin receptor 
substrate 1 and 3

Increased body weight; Hyperglyemia; 
hyperinsulinimia; Insulin resistance No fatty liver

Table 4: Animal models of obesity and T2DM.

was noticed in diabetes subjected treated with incretin, as evidenced by 
increased exocrine cell proliferation and dysplasia. Thus, the safety and 
efficacy issues remain to be investigated when using incretin.

Repaglinide: Repaglinide stimulates insulin release via its 
inhibition of ATP-sensitive potassium channels. A mild weight change 
was observed in patients treated with Repaglinide.

Sitagliptin: Sitagliptin belongs to DPP4 inhibitor. By inhibiting 
DPP4 enzyme activity, it enhances GLP-1 expression. Despite it does 
not interfere with body weight, some adverse effects of DPP4 inhibitors 
have been observed in clinical studies.

Gastrointestinal bypass (GBP)

Mason and Ito proposed GBP treatment for severe obesity in 1967 
[67]. The surgery techniques have been optimized and improved by 
clinicians through the years. In 2009, American Diabetes Association 
(ADA) includes GBP as one treatment for T2DM patients with obesity. 
In 2011, International Diabetes Foundation (IDF) indicated that GMP 
could be applied in early stage in T2DM patients whose BMI exceeds 
35 kg/m2 [68].

GBP surgery reduces stomach volume but increases the tension of 
stomach, therefore, food empties slowly. Due to slow digestion, satiety 
increases that leads to decreased energy intake. Thus it is not surprising 
to see the reduction of BMI and obesity after GBP surgery. Except 
that, although the mechanisms are not known, GBP surgeries have 
been shown to increase adiponectin [69] and PDX-1 [70] expression 
that improve β cell function. Clinical findings from different groups 
have demonstrated that GMP improved glucose metabolism and 
insulin resistance and lowered glucose level both in fasting state and 
OGTT test [71-73]. For instance, Buchwald et al performed a meta-
analysis from 621 studies including 135246 T2DM patients. This study 
showed that GBP surgery resulted in 78.1% patients with complete 
remission, 86.6% patients with improved conditions. Two years after 
surgery, 62% patients were able to maintain diabetes remission [74]. 
In a retrospective cohort study from 9949 patients, after following-up 
of 7.1 years, long-term mortality in patients after GBP surgery was 
significantly reduced compared with control group [75]. However, the 
data of long-term effect of GBP is still very limited and therefore, it is 
dispensable to obtain the long-term data to assess the effect of GBP on 
obesity and T2DM.

Summary
The increasing incidence of obesity and diabetes has drawn more 

and more attention not only in disease treatment but also in disease 
prevention. Understanding the adverse effects of obesity on diabetes 
and the severity of obesity and diabetes will increase our awareness 
in improving diet control, lifestyle, exercise and medications against 
obesity and diabetes. To be addressed, there are many unsolved issues 
from basic to clinical research. For instance, better animal models 
are required to represent diabetes development and complications 
in humans. It still needs to define whether combinations of several 
medications will achieve better therapeutic effect and lower side effect 
than solo medication. Despite targeting obesity has shown successful 
and beneficial effect in diabetes patients, its long-term effect on diabetes 
waits for further investigations.
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