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Introduction
 We introduce 3 IλΓ∫ sequence space and also discuss 3 IλΓ∫

is statistically convergent is pre-Cauchy and the ideal space is pre-
Cauchy. Throughout w, x and Λ denote the classes of all, gai and 
analytic scalar valued single sequences, respectively. We write w3 for 
the set of all complex triple sequences (xmnk), where m, n, k ∈  the set 
of positive integers. Then, w3 is a linear space under the coordinate wise 
addition and scalar multiplication. We can represent triple sequences 
by matrix. In case of double sequences we write in the form of a square. 
In the case of a triple sequence it will be in the form of a box in three 
dimensional case. 

Some initial work on double series and interesting results are 
found in Apostol [1] and double sequence spaces is found in Hardy [2], 
Subramanian et al. [3], Deepmala et al. [4-7], Mishra et al. [8,9], Mishra 
and Mishra [10], Mishra [11] and many others. Later on investigated 
by some initial work on triple sequence spaces is found in sahiner et al. 
[6], Esi et al. [12-15], Savas et al. [16] , Subramanian et al. [17], Prakash 
et al. [18,19] and many others.

Let (xmnk) be a triple sequence of real or complex numbers. Then 
the series 

, , =1 mnkm n k
x∞∑ is called a triple series. The triple series , , =1 mnkm n k

x∞∑
give one space is said to be convergent if and only if the triple sequence 
(Smnk) is convergent, where 

, ,

, , =1
= ( , , = 1,2,3,...)m n k

mnk ijqi j q
S x m n k∑ . 

A sequence x = (xmnk) is said to be triple analytic if; 
1

, , < .m n k
m n k mnksup x + + ∞

The vector space of all triple analytic sequences are usually denoted 
by Λ3. A sequence x = (xmnk) is called triple entire sequence if 

1

0m n k
mnkx + + →  as m,n,k → ∞

The vector space of all triple entire sequences are usually denoted 
by Γ3. The space Λ3 and Γ3 is a metric space with the metric 

1

, ,( , ) = : , , :1, 2,3,... ,m n k
m n k mnk mnkd x y sup x y m n k+ +

 − 
 

    (1)

Forall x = { xmnk } and y = { ymnk } in Γ3. Let φ = {finite sequences}. 

Consider a triple sequence x = (xmnk). The (m,n,k)th section x[m,n,k] of 

the sequence is defined by
, ,[ , , ]

, , =0
= m n km n k

ijq ijqi j q
x x ℑ∑  for all m, n, k ∈ ,

0 0 ...0 0 ...
0 0 ...0 0 ...
.
.

=
.
0 0 ...1 0 ...
0 0 ...0 0 ...

ijq

 
 
 
 
 
 ℑ  
 
 
 
 
  

with 1 in the (i, j, q)th position and zero otherwise. 

A modulus function was introduced by Nakano [20]. We recall that 
a modulus f is a function from [0,∞) →[0,∞), such that 

(1) f (x) = 0 if and only if x = 0

(2) f (x+y) ≤ f (x)+ f (y,) for all x ≥ 0, y ≥ 0,

(3) f is increasing,

(4) f is continuous from the right at 0. Since | f (x) - f (y) |≤ f (|x-y|),
it follows from here that f is continuous on [0,∞). 

Let M and ɸ are mutually complementary Orlicz functions. Then, 
we have: 

(i) For all u,y ≥ 0,

uy ≤ M(u) + ɸ(y), (Young’s inequality) [3]   (2)

(ii) For all u ≥ 0, and 0 < λ < 1,
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In this paper we are concerned with 3 IλΓ∫  statistical convergence of pre-cauchy triple sequences. 3 IλΓ∫ statistical

convergence implies 3 IλΓ∫ statistical pre-Cauchy condition and examine some properties of these concepts. We
examine some properties of these concepts, if the triple entire sequence spaces is statistically convergent then 
statistically pre-Cauchy and also triple sequence of ideal (I3)- is statistically pre-Cauchy. 

The 3 IλΓ∫  Statistical Convergence of pre-Cauchy over the p- Metric Space 
Defined by Musielak Orlicz Function
Deepmala1, N. Subramanian2 and Lakshmi Narayan Mishra3*
1SQC and OR Unit, Indian Statistical Institute, Kolkata 700 108, West Bengal, India
2Department of Mathematics, SASTRA University, Thanjavur 613 401, India 
3Department of Mathematics, National Institute of Technology, Silchar 788 010, Cachar, Assam, India

Adv Robot Autom, an open access journal
ISSN: 2168-9695 



Citation: Deepmala, Subramanian N, Mishra LN (2016) The 3 IλΓ∫ Statistical Convergence of pre-Cauchy over the p- Metric Space Defined by Musielak 
Orlicz Function. Adv Robot Autom 5: 155. doi: 10.4172/2168-9695.1000155

Page 2 of 4

Volume 5 • Issue 3 • 1000155

M (λu) ≤ λM (u)             (3)

Lindenstrauss and Tzafriri used the idea of Orlicz function to 
construct Orlicz sequence space 

( ){ }=1
= : < , > 0 ,M kk

x w M x for some ρ∞
∈ ∞∑

The space M  with the norm

( ){ }=1
= 1 ,kk

x inf M x∞
≤∑

becomes a Banach space which is called an Orlicz sequence space. 
For ( ) ( )= 1 < ,pM t t p≤ ∞  the spaces M  coincide with the classical 
sequence space .p  

A sequence f = (fmnk) of Orlicz function is called a Musielak -Orlicz 
function . A sequence g = (gmnk) defined by 

gmnk (v) = sup {|v|u – (fmnk) (u):u ≥ 0},m,n,k=1,2,…..) 

is called the complementary function of a Musielak-Orlicz function f. 
For a given Musielak Orlicz function f, the Musielak-Orlicz sequence 
space tf. 

t f = {x∈ w3:Mf (|xmnk|)
1/m+n+k → 0 as m,n,k → ∞},

where Mf is a convex modular defined by 

( ) ( ) ( )1/

=1 =1 =1
= , = .

m n k
f mnk mnk mnk fm n k

M x f x x x t
+ +∞ ∞ ∞

∈∑ ∑ ∑
We consider t f equipped with the Luxemburg metric 

( )
1/

, , =1 =1 =1
, = 1 .

m n k
mnk

m n k mnm n k

x
d x y sup inf f

mnk

+ +
∞ ∞ ∞

       ≤       
∑ ∑ ∑  

Definition and Preliminaries
A sequence x = (xmnk) is said to be triple analytic if 

1

, , < .m n k
m n k mnksup x + + ∞  The vector space of all triple analytic sequences 

is usually denoted by Λ3. A sequence x = (xmnk) is called triple entire 

sequence if 
1

0m n k
mnkx + + →  as m,n,k → ∞. The vector space of triple 

entire sequences is usually denoted by Γ3.

 Let w3 denote the set of all complex double sequences ( ) , , =1
= mnk m n k

x x ∞  
and M :[0,∞) →[0,∞), be an Orlicz function. Given a triple sequence, x 
∈ w3. Define the sets: 

3 3= : 0 , , > 0
m n k

mnkx w M as m n k for some
+ +

   
   Γ ∈ → →∞         and 

1

3 3
, , 1= : < > 0 .

m n k
mnk

M m n k

x
x w sup M for some ρ

ρ

+ +

≥

   
   Λ ∈ ∞         

The space 3
MΓ  is a metric space with the metric 

( )
1

, , 1, = > 0 : 1
m n k

mnk mnk
m n k

x y
d x y inf sup Mρ

ρ

+ +

≥

 
  −  ≤       

 
Let n∈ and X be a real vector space of dimension w, where n ≤ m. 

A real valued function 

dp (x1,…,xn) =|| (d1(x1,0),…,dn(xn,0)) ||p on X satisfying the following 
four conditions: 

(i) ||(d1(x1,0),…,dn(xn,0)) ||p = 0 if and and only if d1(x1,0),…,dn(xn,0)
are linearly dependent, 

(ii) ||(d1(x1,0),…,dn(xn,0)) ||p is invariant under permutation,

(iii)||(αd1(x1,0),…,dn(xn,0))||p=|α|||(d1(x1,0),…,dn(xn,0))||p
, α∈

(iv) dp ((x1,y1),(x2,y2)…(xn,yn)) = (dx (x1,x2,…xn)
p + dy (y1,y2,…yn)

p)1/p

for 1 ≤ p < ∞; (or) 

(v) d ((x1,y1),(x2,y2)…(xn,yn)): = sup{dx (x1,x2,…xn),dy (y1,y2,…yn)},

for x1,x2,…xn ∈ X, y1,y2,…yn∈Y is called the p product metric of the 
Cartesian product of n metric spaces is the p norm of the n - vector of 
the norms of the n subspaces. 

A trivial example of p product metric of n metric space is the p 
norm space is X =  equipped with the following Euclidean metric in 
the product space is the p norm: 

 ( )( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 11 12 12 1 1

21 21 22 22 2 1

1 1

1 1 2 2

,0 ,0 ... ,0
,0 ,0 ... ,0

.
( ( ,0), , ( ,0)) = | ( ,0 ) | =

.

.
,0 ,0 ... ,0

n n

n n

n n E mn mn

n n n n nn nn

d x d x d x
d x d x d x

d x d x sup det d x sup

d x d x d x

 
 
 
 
 
 
 
 
  

 

Where xi = (xi1,…xin)∈ n for each i = 1,2,…n = 1,2, .i n

If every Cauchy sequence in X converges to some L ∈ X, then X 
is said to be complete with respect to the p- metric. Any complete p- 

metric space is said to be p- Banach metric space. 

Definition

A) Let X be a linear metric space. A function ρ: X →  is called
paranorm, if 

(1) ρ (x)≥ 0, for all x ∈ X;

(2) ρ (-x) = ρ (x), for all x ∈ X;

(3) ρ (x+y) ≤ ρ (x) + ρ (y), for all x,y ∈ X;

(4) If (σmn) is a sequence of scalars with σmn → σ as m,n → ∞ and (xmn)
be a sequence of vectors with ρ (xmn – x) → 0 as m,n → ∞, then ρ (σmn xmn 
–σ x)→ 0 as m,n → ∞ [18,19].

A paranorm w for which ρ (x) = 0 implies x = 0 is called total
paranorm and the pair (X,w) is called a total paranormed space. It is
well known that the metric of any linear metric space is given by some
total paranorm.

B) A family I⊂ 2Y×YY of subsets of a non empty set Y is said to be an 
ideal in Y if; 

(1) φ ∈ I

(2) A, B, C ∈ I simply A B C I∈
 

(3) A, B ∈ I, C ⊂ A imply C ∈ I.

while an admissible ideal I of Y further satisfies {x}∈I for each x∈Y. Given I 
⊂ 2×× be a non trivial ideal in ××. A sequence (xmnk)m,n,k∈××
in X is said to be I- convergent to 0 ∈ X, if for each ε > 0 the set 

( ) { }1 1= , , : ( ( ,0), , ( ,0)) 0n n pA m n k d x d xε ε∈ × × − ≥    
 belongs to I. 

C) A non-empty family of sets F ⊂ 2X×XX is a filter on X if and only if 

(1) φ ∈ F

(2) for each A, B, C ∈ F, we have imply A B C F∈
 

(3) each A, B ∈ F and each B ⊂ C, we have C ∈ F
D) An ideal I is called non-trivial ideal if I ≠ φ and X ∉ I. Clearly I

⊂ 2X×XX is a non-trivial ideal if and only if F = F (1) = {X − A:A ∈ I} is 
a filter on X. 
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E) A non-trivial ideal I ⊂ 2^{X×X×X} is called (i) admissible if and only 
if {{x}:x ∈ X} ⊂ I. (ii) maximal if there cannot exists any non-trivial 
ideal J ≠ I containing I as a subset. 

If we take I = If = {A ⊆ ××: A is a finite subset}. Then If is a 
non-trivial admissible ideal of  and the corresponding convergence 
coincides with the usual convergence. If we take I = Iδ = { A ⊆ ××:δ 
(A) = 0} where δ (A) denote the asymptotic density of the set A. Then
Iδ is a non-trivial admissible ideal of ×× and the corresponding 
convergence coincides with the statistical convergence. 

F) A sequence space E is said to be monotone if E contains the
canonical pre-images of all its step spaces. 

Remark

Let µ = (λrsu) be a non-decreasing sequence of positive real numbers 
tending to infinity and λ111 = 1 and r+1,s+1,u+1 ≤ λrsu + 1, for all r,s,u ∈ . 

The generalized de la Vallee-Poussin means is defined by 

( ) ( )
1/

, ,

1= m n k
rsu mnk abcp q t Irsu

t x x x
αβγ

+ +

∈
−∑

Where Irsu = [r,s,u − λrsu + 1, rsu]. A sequence x = (xmnk) of complex 
numbers is said to be (V3,λ)− summable to a number if trsu (x) → L as 
r,s,u → ∞.

Some New Integrated Statistical Convergence Sequence 
Spaces of pre-Cauchy

The main aim of this article to introduce the following sequence 
spaces and examine topological and algebraic properties of the resulting 
sequence spaces. Let p = (pmnk) be a sequence of positive real numbers 
for all , ,m n k∈ . f = (fmnk) be a sequence of Musielak-Orlicz function, 
(X,||(d(x1, 0), d(x2, 0),… d(xn−1, 0))||p) be a p− metric space, and (αβγ) be 
a sequence of non-zero scalars and µmnk (X) = d(trsu,0) be a sequence of 
pre-Cauchy, we define the following sequence spaces as follows: 

Definition

Let f is a Musielak Orlicz function and a triple sequence (xmnk)m,n,k∈ 
is said to I− statistically convergent if, for any ε > 0 and δ > 0, 

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )( )

33
1 2 1 , ,

1 2 1 3

, ,0 , ,0 , , ,0 =

, , : , ,0 , ,0 , , ,0 ,

I
q

f n r s up

qmnk

rsu mnk mnk n p

d x d x d x lim

m n k I f x d x d x d x I

µ

µ ε

− →∞

−

 Γ  
    ∈ ≥ ∈        





 

where 

( ) ( )( ) ( )
1/

, ,

1= ,0 = ,0 .m n k
mnk rsu mnkp q t Irsu

x d t x d xµ
αβγ

+ +

∈

 
 
 

∑  

Main Results
Theorem

Let f is a Musielak Orlicz function and if 

( ) ( ) ( )( )3
1 2 1, ,0 , ,0 , , ,0q

f n p
d x d x d xµ −

 Γ  
  statistically convergent 

then 

( ) ( ) ( )( )1 2 1, ,0 , ,0 , , ,0f nd x d x d x 
  

 statistically pre-Cauchy. 

Proof: For any ε > 0 and  > 0, 

( ) ( ) ( ) ( )( )( ), , 1 2 1 3= , , : , ,0 , ,0 , , ,0 .
2

qmnk

r s u rsu mnk mnk n p
A lim m n k I f x d x d x d x Iεµ δ→∞ −

    ∈ ≥ ≥ ∈        


 
Then 

( ) ( ) ( ) ( )( )( )1 2 1, ,0 , ,0 , , ,0 < ,
2

qmnk

mnk mnk n p
f x d x d x d x εµ δ−

   ≥    
  

that is, 

( ) ( ) ( ) ( )( )( )1 2 1, ,0 , ,0 , , ,0 < > 1 ,
2

qmnk

mnk mnk n p
f x d x d x d x εµ δ−

   −    


 

for all (m,n,k) ∈ Ac, where c stands for the complement of the set A. 
Writing 

( ) ( ) ( ) ( )( )( )1 2 1= , ,0 , ,0 , , ,0 < ,
2

qmnk

mnk mnk n p
B f x d x d x d x εµ −

      
  we 

observe that m,n,k,a,b,c ∈ B

( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )( )

1 2 1

1 2 1

1 2 1

, ,0 , ,0 , , ,0

, ,0 , ,0 , , ,0

, ,0 , ,0 , , ,0 < = .
2 2

qmnk

mnk mnk abc n p

qmnk

mnk mnk n p

qmnk

mnk abc n p

f x x d x d x d x

f x d x d x d x

f x d x d x d x

µ µ

µ

ε εµ ε

−

−

−

 −  

 ≤ +  

  +  







Therefore 

( ) ( ) ( ) ( )( )( )1 2 1, ,0 , ,0 , , ,0 <
qmnk

mnk mnk n p
B B B f x d x d x d xµ ε−

  × × ⊂     
  

which implies 

( ) ( ) ( ) ( ) ( )( )( )3
1 2 1, ,0 , ,0 , , ,0 < .

qmnk

mnk mnk abc n p
B f x x d x d x d xµ µ ε−

    ≤ −      
  

Hence 

( ) ( ) ( ) ( ) ( )( )( ) ( )3 3
1 2 1, ,0 , ,0 , , ,0 < > 1 ,

qmnk

mnk mnk abc n p
f x x d x d x d x Bµ µ ε δ−

  − ≥   −      
  

that is 

( ) ( ) ( ) ( ) ( )( )( ) ( )3
1 2 1, ,0 , ,0 , , ,0 < < 1 1

qmnk

mnk mnk abc n p
f x x d x d x d xµ µ ε δ−

  − − −    
  

for all (m,n,k) ∈ Ac. Let δ111 > 0 be given. Choosing δ > 0 so that 1−(1−δ)3 
< δ111, we see that every (m,n,k) ∈ Ac 

( ) ( ) ( ) ( ) ( )( )( )1 2 1 111, ,0 , ,0 , , ,0 <
qmnk

mnk mnk abc n p
f x x d x d x d xµ µ ε δ−

 − ≥  
  

and so 

( ) ( ) ( ) ( ) ( )( )( )1 2 1 111, ,0 , ,0 , , ,0 .
qmnk

mnk mnk abc n p
f x x d x d x d x Aµ µ ε δ−

   − ≥ ≥ ⊂     


Since A ∈ I3, we obtain 

( ) ( ) ( ) ( ) ( )( )( )1 2 1 111 3, ,0 , ,0 , , ,0 .
qmnk

mnk mnk abc n p
f x x d x d x d x Iµ µ ε δ−

   − ≥ ≥ ⊂     


Theorem

Let f is a Musielak Orlicz function and a triple sequence x = (xmnk) is 
I3 − statistically pre-cauchy if and only if 

( ) ( )

( ) ( ) ( ) ( ) ( )( )( )
3 , , , , , ,

1 2 1, ,0 , ,0 , , ,0 = 0.

r s u m n k I a b c Irsu rsu
qmnk

mnk mnk abc n p

I lim

f x x d x d x d xµ µ

→∞ ∈ ∈

−

−

 −  

∑ ∑



Proof: We assume that 

( ) ( )

( ) ( ) ( ) ( ) ( )( )( )
3 , , , , , ,

1 2 1, ,0 , ,0 , , ,0 = 0.

r s u m n k I a b c Irsu rsu
qmnk

mnk mnk abc n p

I lim

f x x d x d x d xµ µ

→∞ ∈ ∈

−

−

 −  

∑ ∑



Given ε > 0 and we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( ) ( )( )( )

, , 1 2 1, , , ,

1 2 1

, ,0 , ,0 , , ,0

. , ,0 , ,0 , , ,0 .

qmnk

r s u mnk mnk abc nm n k I a b c I prsu rsu

qmnk

mnk mnk abc n p

lim f x x d x d x d x

f x x d x d x d x

µ µ

ε µ µ ε

→∞ −∈ ∈

−

 − ≥  
  − ≥     

∑ ∑ 



Therefore for any δ > 0,
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( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )
1 2 1

1 2 1, , , ,

, , 0 , ,0 , , ,0

, ,0 , ,0 , , ,0 .

qmnk

mnk mnk abc n p

qmnk

mnk mnk abc nm n k I a b c I prsu rsu

f x x d x d x d x

f x x d x d x d x

µ µ ε δ

µ µ εδ

−

−∈ ∈

   − ≥ ≥ ⊂     

 − ≥  ∑ ∑





Since, 

( ) ( )

( ) ( ) ( ) ( ) ( )( )( )
3 , , , , , ,

1 2 1, ,0 , ,0 , , ,0 = 0.

r s u m n k I a b c Irsu rsu
qmnk

mnk mnk abc n p

I lim

f x x d x d x d xµ µ

→∞ ∈ ∈

−

−

 −  

∑ ∑



Hence, 

( ) ( ) ( ) ( ) ( )( )( )1 2 1 3, ,0 , ,0 , , ,0 .
qmnk

mnk mnk abc n p
f x x d x d x d x Iµ µ ε δ−

   − ≥ ≥ ∈     


Hence x is I3 statistically pre-Cauchy. 

Conversely assume that x is I3, where I3 is triple sequence of ideal is 
statistically pre-cauchy and given ε > 0. Since x is analytic there exists 
an integer M such that |xmnk|

1/m+n+k ≤ M for all m,n,k ∈,

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( ) ( )( )( )

1 2 1, , , ,

1 2 1

, ,0 , ,0 , , ,0

2 , ,0 , ,0 , , ,0 .
2

qmnk

mnk mnk abc nm n k I a b c I prsu rsu

qmnk

mnk mnk abc n p

f x x d x d x d x

M f x x d x d x d x

µ µ

ε µ µ

−∈ ∈

−

 − ≤  

 + −  

∑ ∑ 



Since x is I3 − statistically pre-Cauchy, for δ > 0. 

( ) ( ) ( ) ( ) ( )( )( ), , 1 2 1 3= , , : , ,0 , ,0 , , ,0 .
2

qmnk

r s u rsu mnk mnk n p
A lim m n k I f x d x d x d x Iεµ δ→∞ −

    ∈ ≥ ≥ ∈        
  

Then for (m,n,k) ∈ Ac 

( ) ( ) ( ) ( )( )( )1 2 1, ,0 , ,0 , , ,0 <
2

qmnk

mnk mnk n p
f x d x d x d x εµ δ−

  ≥  


 and so 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )1 2 1, , , ,
, , 0 , ,0 , , ,0

2 .
2

qmnk

mnk mnk abc nm n k I a b c I prsu rsu
f x x d x d x d x

M

µ µ

ε δ

−∈ ∈
 −  

≤ +

∑ ∑ 

Let δ1 > 0 be given. Then choosing ε, δ > 0 so that 
12

2
Mε δ+

therefore every (m,n,k) ∈ Ac 

( ) ( )

( ) ( ) ( ) ( ) ( )( )( )
, , , ,

1 2 1 1, ,0 , ,0 , , ,0 < ,

m n k I a b c Irsu rsu

qmnk

mnk mnk abc n p
f x x d x d x d xµ µ δ

∈ ∈

−
 −  

∑ ∑



that is 

( ) ( ) ( ) ( ) ( )( )( )
, ,

1 2 1 1 3, , : , ,0 , ,0 , , ,0 .
2

r s u

qmnk

rsu mnk mnk n p

lim

m n k I f x d x d x d x A Iεµ δ

→∞

−

    ∈ ≥ ≥ ⊂ ∈        


 

This completes the proof. 

Conclusion
We examine some properties of these concepts, if the triple entire 

sequence spaces is statistically convergent then statistically pre-Cauchy 
and also triple sequence of ideal is statistically pre-Cauchy. In future 
developed by rough statistical convergence on triple sequence and 
also rough sets in statistical convergence of fractional order of triple 
sequence of Γ. 
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