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Introduction
The problem of solute transport in fractured-porous media is 

encountered under various hydrogeological and ecological processes. 
A large number of papers have been devoted to the hydrodynamic 
modeling of the solute transport processes in a porous medium (PM) 
[1-6]. As a porous medium with a stagnant zone and certain degree of 
convention, can be considered as a fractured-porous medium (FPM) 
with a low permeability of porous blocks. In such FPM, liquid in porous 
blocks is considered to be stationary, and the system of fractures along 
which the liquid moves is regarded as a transit pore [7-9].

Objects and Methods of Investigation
In this paper, using the model approach [3-6], the motion of a 

dispersed liquid and the adsorbed solute transport into a FPM are 
examined taking into account the convective diffusion and dispersion 
effects. The main attention is paid to longitudinal convective diffusion 
in fracture and its effect on the adsorption of solute.

In order to investigate the solute transport in such media, we 
consider an element of a FPM consisting of a single fracture and an 
adjacent porous block (Figure 1). A fracture is a semi-infinite one-
dimensional object, so that the solute distribution and the fluid flow 
along its cross-section are considered as a homogeneous. In such case, 
the second fracture measurement, i.e. its thickness is not taken into 
account. The porous block occupies the first quarter of the plane Figure 
1. Thus, the region { }0 , 0R x y≤ < ∞ ≤ < ∞  is considered, only.

In a fracture there is a convective-diffusion solute transport and 
in a porous block only a diffusion one. Both in fracture and in porous 

block, the solute can be adsorbed during the transport process.

The liquid in fracture flows at a given constant rate. At the end (x=0) 
of fracture, the liquid is supplemented by solute with concentration c0. 
Initially, the fracture and the porous block are considered to be filled 
with pure (without substance) liquid.

The fracture is modeled as a one-dimensional object, so the 
distribution of concentration along its cross-section is not considered. 
In fracture, the coefficient of convective diffusion fD∗  must be 
considered as:
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where D* is the coefficient of molecular diffusion of the solute (liquid), 
η the scattering coefficient, w

θ
 the physical velocity of the fluid. In 

fracture, the fluid velocity and the speed of filtration coincide, because 
θ=1. Then, we have *

fD D vη∗ = + , where v is the velocity of the fluid.

The balance equation of the solute transport process and the fluid 
flow in a FPM with convective diffusion and adsorption can be written as:
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where cf=cf(t,x) is the solute concentration in fracture, m3/m3; cm=cm(t,x,y) 
the concentration in a matrix, m3/m3; sf=sf(t,x) the concentration of the 
adsorbed solute in fracture, m3/kg; sm=sm(t,x,y) the concentration of 
adsorbed matter in a matrix, m3/kg; *

mD  - effective diffusion coefficient 
in a matrix, m2/s; ρ is the density of saturated medium, kg/m3; b the 
fracture width, m; θm the matrix porosity coefficient, t - time, s.

We solve the system in eqns.(1) and (2) with the equilibrium 
adsorption (Henry isotherm):
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Abstract
In this paper the solute transport in a fractured-porous medium is considered with equilibrium adsorption. One 

the basis of numerical results an influence of adsorption on solute transport characteristics is estimated.
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Figure 1: Schematic picture of the transfer of substance and flow in FPM.
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where km,kf are the adsorption coefficients in a matrix and fracture, m3/kg.

We assume that there is no solute flow at the boundaries x=∞ 
of fracture and matrix. The equilibrium of concentrations cm and cf 
is ensured at the boundary. Under these conditions, the initial and 
boundary conditions have the form:

cf(0,x)=cm(0,x,y)=0,				                  (5)

cf(t,0)=c0,					                    (6)

cf(t,x)=cm(t,x) = cm (t,x,0,				                   (7)
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,		   		                 (9)

Numerical Solution of the Problem
The problem in eqns. (1) and (9) is solved by the finite differences 

method in eqn. (9). To do this, in the region R we construct a grid 

( ){1 2 1 2, , , , , ,h h k i j k i jt x y t k x ih y jhτω τ= = = =

}0, , 0,1,..., 0,1,...,k K i j T Kτ= = = = , 

where h1 is the grid spacing in the x direction, h2 the grid spacing in 
the y direction, τ the grid spacing in time, T the maximum time during 
which the process is investigated, K the number of grid intervals in 
time. Thus, in eqn. (1) is approximated on the grid 

1hτω ω∪ , and 
in eqn. (2) on the grid 

21hhωωτ ∪ . To approximate in eqn. (1), we 
use an implicit "anti-flow" scheme, and for in eqn. (2) we use a purely 
implicit scheme or a scheme with an advance. For Henry isotherms this 
approximations have the form 
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where, ,1 , 1 , ,k k
f f m m i i j

m

R k R k cf cmρρ
θ

= + = +  are grid values of 

concentrations cf(t,x) and cm(t,x,y) at grid points (tk,xi) and (tk,xi,yj) , 
respectively. In eqn. (10, 11) are reduced to three-point grid equations

( )11 1 1
1 1 1 1 1 ,k k k

i i i iA cf B cf C cf F+ + +
− +− + = − 1, 1, 0, 1i I k K= − = − 	              (12)

( )21 1 1
2 , 1 2 , 2 , 1 , ,k k k

i j i j i j i jA cm B cm C cm F+ + +
− +− + = − 0, , 1, 1, 0, 1i I j J k K= = − = −        (13)

where I,J sufficiently large integers, taken in such a way that the 
concentration and adsorption fronts do not reach the points, 
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The initial and boundary conditions are approximated in the form
0 0

, 0,i i jcf cm= = 		      		                  (14)
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To solve the difference in eqn. (12,13), we apply the sweep method. 
So, the solution can be presented in the form

( ) ( )1 11 1
1 1 1 , 1, 1, 0, 1k k
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+ + += + = − = − ,	               (19)
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where ( ) ( ) ( ) ( )1 1 2 2
1 1 1 1, , ,i i j jα β α β+ + + +  are the run ratios. Using in eqn. (19) from 

(12), we obtain the following recurrence formulas to determine the 
running coefficients ( ) ( )1 1
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In a similar way, we obtain recurrence formulas for the running 
coefficients in (20)
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To determine the starting values ​​of the coefficients, we use the 
boundary conditions in eqn. (15,16). From in eqn. (19) we have 

( ) ( )1 11 1
0 1 1 1 0
k kcf cf cα β+ += + = , whence  ( ) ( )1 1

1 0 1, 0cα β= = .

From in eqn. (20) for j=0, We obtain ( ) ( )2 21 1 1
,0 1 1 ,1 ,k k k
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The calculation is carried out in the following sequence: In eqn. 

(19) we determine 1k
icf +  by the sweep method, then in eqn. (20) 

1
,
k
i jcm +  by same method.

After determining the concentration fields from the isotherms, it is 
possible to determine the adsorption fields

1 1,k k
i f isf k cf+ +=    1 1

, , .k k
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For the above procedure to calculate the fields , ,k k
i j icm cf  and 

,
k
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isf , as well as the relative mass transfer from the fractures 
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∂
, a special computational program is compiled 

into the matrix. 

In practical calculations, the following values of the initial 
parameters were used: 0 0,01c = , 0,2mθ = , 61 10mD ∗ −= ⋅  m2/s,b=4.10-4 

m,km=3.10-5 m3/kg, kf=3.10-5 m3/kg, ρ=2500 kg/m3.

Results and its Discussion
Figure 2 reflects the surface of relative concentration z and 

adsorption s. One can see that on surfaces, an increase in solute 
concentration in fracture and, accordingly, in the region R, with a small 
x the solute transport from the fractures into the porous blocks becomes 
significant. The longitudinal convective diffusion in fracture leads 
to a smearing of the profiles cf, which in turn affects the distribution 
of cm Figure 2a. In turn, convective diffusion leads to an increase in 
adsorption in the fracture and the porous block Figure 2b, as well as 
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mass exchange between the fracture and the porous block.

The results of calculations of the relative mass transfer Q from 
a fracture to a porous block are shown in Figure 3a. Analysis of the 
graphs shows that for a certain value of time the increase in the value 
of convective diffusion in fracture leads to an increase in Q through 
y=0. Based on the curves in Figure 3a was also estimated cumulative 
conditional mass transfer Q through y=0. 

0
cumQ Q dx

∞

= ∫
For each time point t that characterizes the total mass transfer 

through y=0 at a given time. In Figure 3b shows graphs of the change 
Qcum in time t. It can be seen that the cumulative conditional mass 
transfer first increases in time, then a monotonic decrease its value is 
observed. At the same time, with an increase in the value of convective 
diffusion in the fracture Qcum, the growth rate is more accelerated.

In Figure 3c, shows the graphs of the total conditional solute 
transport change through y=0 from fracture to porous block versus 
time.

0 0 0

t t

sum cumQ Q dt Q dxdt
∞

= =∫ ∫ ∫

The graphs show that Qcum increases monotonically with time. In 
this case, an increase in the value of convective diffusion in the fracture 
contributes to an increase Qcum.

The results of calculations for different values of the velocity of 
motion a η=2.10-3 m, D*=1.10-6 m2/s in fracture are shown in Figures 4 
and 5. In Figure 4, the surfaces c/c0 are also reflected s for two values v. 
On surfaces it can be seen that an increase in the velocity of the fluid 
in a fracture leads to an increase in the distribution of concentration in 
the region R, which in turn increases the adsorption of the substance.

The nature of the change in the relative mass transfer Q is shown 
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Figure 2a: The surface of the relative concentration с/с0 (a).
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Figure 2b: The surface of the relative concentration at 5 10 4v = ⋅ − m/s,  t=10000 
s,  0fD∗ =  (1) , 46 10fD∗ −= ⋅  m2/s (2).
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various values of *

fD .  
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in Figure 5a. For v=2.10-3 m/s, the relative mass transfer Q is higher in 
the whole region x than in v=1.10-3 m/s and v=5.10-4 m/s. This pattern 

is observed for the cumulative and relative flow from the fracture to 
the porous block (Figure 5). At the same time, with increasing speed, 
movement in a fracture leads to an increase in Qcum and Qcum.

Conclusion
We conclude that an increase of the convective diffusion coefficient 

leads to an acceleration of the process of the formation of an equilibrium 
adsorption regime as well as the distribution of concentration in a 
porous medium. Comparing the data presented, it can be seen that 
the diffusion rate leads to an increase in the concentration distribution 
zone, however, higher concentration gradients are formed at the 
boundary of the fracture and porous block. 
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