The Ascending Aorta Pseudoaneurysm with Myocardium Rupture Complicated with Prosthetic Valve Infective Endocarditis after Aortic Valve Replacement

Atsushi Kobayashi*, Kazuhiro Nakazato, Yuichiro Jin, Hiroyuki Yamauchi, Takashi Kaneshiro, Masayoshi Oikawa, Hitoshi Suzuki, Shu-ichi Saitoh and Yasuchika Takeishi

Department of Cardiology and Hematology, Fukushima Medical University, Japan

*Corresponding author: Atsushi Kobayashi, MD, Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan 960-1295, Fax: +81-24-548-1821, Tel: +81-24-547-1190; E-mail: koba-a@fmu.ac.jp

Received date: Mar 17, 2014, Accepted date: Apr 9, 2014, Published date: Apr 16, 2014

Copyright: © 2014 Kobayashi A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abbreviations

AVR: Aortic Valve Replacement; CAVB: Complete Atrioventricular Block; PVE: Prosthetic Valve Infective Endocarditis

A 41-year-old man was referred to our hospital complaining of epigastralgia and back pain lasting for 1 month and had consistently elevated plasma CRP levels. His past medical history included aortic valve replacement (AVR) due to aortic regurgitation at the age of 39 years and pacemaker implantation because of complete atrioventricular block (CAVB) 6 months before the present admission. Transthoracic echocardiography demonstrated a pseudoaneurysm of the nearby left ventricular septum and rupture of the left ventricular myocardium by enlargement of the pseudoaneurysm (Figures 1 and 2).

The pseudoaneurysm, which invaded the left ventricular myocardium, dilated during diastole, but no connection to the left ventricular cavity was observed. Transthoracic echocardiography also showed reduced motion of the inferior left ventricular wall. The prosthetic valve was not destabilized, and prosthetic valvular function was normal. Furthermore, transesophageal echocardiography demonstrated the pseudoaneurysm to be in the posterior aortic root (Figure 3).

Figure 1: Transthoracic echocardiography. Parasternal long axis view demonstrating a pseudoaneurysm (arrow). LV indicates left ventricle; LA, left atrium; Ao, aorta.

A cardiac 3-dimensional computed tomography scan showed that the pseudoaneurysm was widespread around aortic root ring and into the left ventricular myocardium (Figure 4).

Figure 2: Transthoracic echocardiography Parasternal short axis view demonstrating the pseudoaneurysm (arrow) into the left ventricular myocardium.

Figure 3: Transesophageal echocardiography demonstrating the pseudoaneurysm (arrow) to be in the posterior aortic root.
A perivalvular abscess was found 2 years after AVR in the present case. The patient had a history of pacemaker implantation 6 months previously, due to CAVB. CAVB might be is a complication of the perivalvular abscess. Diagnosis of prosthetic valve infective endocarditis (PVE) is challenging and difficult [3].

The low survival rate for this disease is related to deficiencies of identifying prosthetic and periprosthetic damage via echocardiography, which can lead to a delay in the application of antibiotic and surgical therapies. A recent study has indicated that the use of positron emission tomography with 18F-fluorodeoxyglucose is helpful for diagnosing PVE [4].

We suggest early detection and early intervention of PVE and pseudoaneurysm after AVR as they are fatal complications.

References