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Editorial
Over the years, continuous efforts in understanding the complex

multi-step processes at different levels have transformed biology from
a qualitative to a more quantitative subject, resulting an enormous
generation of information at diverse scales from molecular/genome to
ecological as well as epidemiological/clinical. Biological data is highly
overrepresented with respect to its quantity, diversity and analysis.
Advances in high throughput experimental techniques have expanded
the lengths and scales of biology by providing a large amount of
diverse biological data with relatively less input costs. Its heterogenous
and complex nature poses a great challenge for both scientists and
technicians in high quality data generation, its management,
accessibility, handling and integration.

The term 'big data' not only talks about the quantity/volume of data
generated but also the rate of increment, processing, diversity as well as
reliability [1]. Biological big data ranges from laboratory scale 'omics'
type experiments to geographical distribution of human populations
around the world. The advent of cost-effective high throughput
techniques like next generation sequencing for rapid genomic and
RNA sequencing, mass spectrometry of identifying proteomes and
metabolomes, microscopy-based image generation of cells, microarray
and RNA sequencing for mRNA expression, Chip-Seq for binding site
identification, yeast two-hybrid assay for protein-protein interactions,

X-ray crystallography and NMR for protein structures [2] has
benefitted biologists to generate a diverse set of information even with
small scale lab setups although the size of data generated is huge.

If we only consider genomics, even a single newly sequenced human
genome is around 140 gigabytes (GBs) in size. After the Human
Genome Project, which showcased the first generation of big data in
biology, a large number of collaborative projects globally have further
added to the quantity of biological big data. ENCODE, HapMap and
1000 Genomes project are some of the important projects that have
revolutionized the generation of a catalogue of information, largely
using standardized protocols, reagents and analysis schemes. The
sequence read archive (SRA) of the National Centre of Biotechnology
Information (NCBI) now hosts around 3.6 petabases of such raw
sequence data. It is predicted that by 2025, around 2-40 exabytes (1
exabyte = 109 gigabytes) of only human genomic data accounting for 1
zettabases per year, would be generated [3]. Similarly, if we consider
only the gene expression data, EBI-ArrayExpress database alone hosts
around 42.67 terabytes (TB) of archived data accounting for 65849
transcriptional profiling experiments. Table 1 gives an idea about the
volume of data stored within a few popular databases. This further
raises the concern for storage and management of large-scale datasets
efficiently.

Data type Database Datasets References

Gene expression ArrayExpress 65849 experiments, 2016701 assays [4]

Protein expression PaxDB 4.0 419 datasets, >300000 proteins covered [5]

Protein 3D structure RCSB-PDB 114643 released structures [6]

Nucleotide sequence GenBank 189232925 sequences, 203939111071 bases [7]

Table 1: Number of datasets stored in few popular databases.

To give a flavour of the increasing focus towards generation and
analysis of diverse biological datasets, year-wise data (between the
years 1970 to 2015) from few popular databases hosting diverse
biological datasets is compared (Figures 1 and 2). Historically, the
protein-protein interaction and protein structure data were first made
available (Figures 2A and 2B). There were 3 protein-protein interaction
pairs experimentally identified in the year 1970 and 13 protein 3D
structures made available in the PDB database in 1976. Genome
sequencing became popular in the early 2000s after the Human
Genome Project with around 64729 sequences from 2124 species
available in 2003 (Figure 1A). Gene sequence data was made publicly
available in 1982 with 606 gene sequences deposited in GenBank
(Figure 1B). RNA-seq (Figure 1C), Microarray (Figure 1D), Proteomics

(Figure 2C), ChIP-Seq (Figure 2D) datasets are considerably new
technologies that originated after 2003, hence the quantity of data is
low as compared to protein interactions or gene sequences.

Further, an increasing exponential trend can be observed in all
forms of biological datasets. After 2014, there is a considerable
reduction in microarray datasets and a corresponding increase in
RNA-seq experiments respectively, suggesting the choice of a better
technology to achieve the same goal (Figures 1C and 1D). The amount
of curated nucleotide sequences of different species is also increasing
considerably due to better understanding of gene function as an
incentive from recent phenotype describing technologies (Figure 1A).
In contrast, the number of gene sequences added yearly to GenBank
has reduced after 2010, a trend that is rather confusing while
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considering the availability of cost-effective next generation
sequencing technologies (Figure 1B). The amount of proteomics
(Figure 2C) and RNA-seq (Figure 1C) datasets are also exponentially
increasing suggesting the collective focus towards technologies that
explain the phenotype of any organism. The advent of high throughput
proteomics has promoted the extensive purification of proteins that are
further probed for their 3D structure determination. Hence, there is
also an exponential increase in the number of protein structures
(Figure 2B) being solved. The ChIP-Seq datasets have recently gained
high importance for high-throughput identification of transcription
factor binding sites and are also increasing in number rapidly (Figure
2D).

Figure 1: Plots displaying the trends of different nucleotide
sequence-related biological datasets as reported in corresponding
databases for the period 1970-2015. Each subplot represents the
number of datasets generated from a distinct type of experimental
technology and deposited in the respective database. A) Number of
curated genomes in RefSeq database; B) Number of nucleotide
sequences in the GenBank database; C) Number of RNA-seq
datasets reported in EBI-ArrayExpress database; D) Number of
Microarray datasets in the EBI-ArrayExpress database.

Figure 2: Plots displaying the trends of different protein-related
biological datasets as reported in corresponding databases for the
period 1970-2015. A) Number of protein-protein interacting pairs
reported in BioGRID database; B) Number of structures released by
PDB; C) Number of proteomic datasets present in PaxDB; and D)
Number of ChIP-Seq datasets in EBI-ArrayExpress.

The continuous advancements in cellular and molecular biology
experiments, genomics or proteomics studies have not only generated
a plethora of data but also helped to identify the sub cellular
localization of the pathway components and to annotate the
biochemical pathway diagrams, eventually leading to development of
various databases with reconstructed pathway maps, interactive user
friendly interfaces to facilitate several operations, such as, pathway
data retrieval, sharing and storing [8]. At the same time, these
databases also face several challenges, such as, automated data curation
and annotation, automated pathway image generation, requirement of
pathway nomenclatures, lack of specific boundary conditions for
pathway reconstruction, inability to show protein complexes, etc.,
which further leads to requirement of proper computation tools and
methods to deal such problems. Similarly, at ecological scales a
tremendous amount of data is generated to deal with global-scale
environmental issues, climate change, food security, spread of disease,
availability of clean water and most importantly species survival [9].

Thus the increasing amount of data generated at each level raises
important issues in big data management including storage,
accessibility, processing of data on the run, and security [10]. One of
the most sought after solutions to these problems is the use of High
Performance Computing clusters (HPCs), which not only provide
storage solutions but also parallelize processing of computational tasks
over the stored data. Specific applications can be catered towards
distribution of data into all the CPUs of the cluster to obtain the
processed information simultaneously. Towards the usage of HPCs,
technologies like the MapReduce model have been developed within
open-source software frameworks like the Hadoop project, where
major computational tasks can be distributed as multiple small tasks
and their outputs re-integrated for your final solution. Further, cyber-
security protocols and web proxies installed in the HPCs secure the
usage of the stored data. But, the flipside of using HPCs is the
substantial cost involved in buying the required components of the
cluster, their maintenance and support.

A relatively new solution to handle big data is the usage of “cloud
computing” [10]. Cloud computing refers to a virtualization
technology where the user on demand can store, process or retrieve
data distributed over many virtual machines hosted on remote servers.
These remote servers, the technology and services associated with it
are provided by companies, like Amazon, Microsoft and Google, where
the user only has to pay for the virtual system and the service that is
required. Such methods provide a flexible, cost-effective way of using
high-level computation power for the end-user to analyze petabytes of
data at a time. Cloud computing can also be combined with the
MapReduce model to further enhance the computational power to
manipulate exabytes of data. As compared to storage and on the fly use
of applications, data sharing and retrieval is the biggest concern for
scientists. Users are limited by the usage of internet bandwidth and
hence, face a problem to retrieve this large-scale processed data at high
speed. A lot needs to be achieved in this direction as cloud computing
largely relies on the uninterrupted, strong network connections
between the host and the remote server. 

With the advancements of science and technology, there will be a
continuous generation of biological big data so as to understand more
about the complex processes and it will also evolve continuously at
different scales. Eventually this will pose several challenges demanding
more time, space, large amount of monetary investment and at the
same time require development of new computational tools, methods
and technologies. The best way to tackle this data explosion may be to
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follow a hypothesis-driven research, where a specific question is asked
and the data generated or acquired aids to answer the preferred
question [1]. A focused approach would reduce the extraneous
generation and storage of data, as experiments would be directed
towards the specific hypothesis needed to be proven. Statistical and
mathematical techniques of data integration need to be applied on the
already existing data to build a phenomenological or data-driven
hypothesis that can explain core fundamental observations, which can
be tested or proven on newly generated data. Predictions from such
techniques would further help to reduce the search space and would
narrow down the requirement of appropriate data generation.
Decreasing the data redundancy at each level may also be a probable
solution to deal this huge amount of information, hence development
of novel techniques to scale-down the data is an utmost requirement.

The recently developed field of systems biology aims towards a
similar integration of known hetergeneous data, their analysis and
generation of experimentally testable hypotheses. It further explains
the underlying design principles of different elements of biological
systems and the association between different phenomena. A systemic
view can help to narrow down the focus towards fundamental
questions that can help to generate specific data thereby reducing the
intensity of data explosion. This demands the collaboration of
mathematicians, statisticians, experimental and computational
biologists to propose specific projects aimed towards relevant
implementation of hypothesis-based experiments that can control the
data flood for meaningful information. Finally, development of new
data mining techniques, faster and efficient search algorithms, novel
computational strategies for integration and interpretation of
information from different scales can be some of the future challenges
to the researchers working in this direction.
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