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Introduction
Neuronal signaling and metabolism 

The function of neurons is communication and to do this 
efficiently, neurons must maintain a constant readiness. This entails 
two separate processes; housekeeping activities to maintain their 
structural and metabolic integrity, and second, maintaining an ability 
to spike as required. Much progress has been made in understanding 
the encoding of spike-generated neuronal languages. These sometimes 
very complicated and specific signal trains require adequate amounts of 
adenosine tri-phosphate (ATP) for neurons to perform at any level of 
required synaptic activity. Each spike and recovery period lasts about 
1 ms and individual neurons may spike at up to 800-900 spikes/s (Hz). 
The spike is generated by depolarization of the plasma membrane 
with K+ leaving the neuron and Na+ entering the neuron making the 
interior somewhat less negative. The membrane is rapidly repolarized 
after each spike via Na+/K+ ATPase using ATP to restore the internal to 
external negative potential [1]. This produces adenosine di-phosphate 
(ADP) as a byproduct which must then be regenerated into ATP. To 
do this, neurons take up and oxidize D-glucose (Glc) using O2, both 
of which are supplied by the vascular system. Since the total energy 
supply available to the brain is limited [2], it is vital for neurons to be 
able to divert scarce energy supplies to areas of high metabolic need 
and/or increased spiking activity. Neurons have sufficient supplies 
of stored ATP for repolarization to send meaningful messages for 
only several minutes. Therefore, it is important to understand how 
neurons communicate with the vascular system for supply of sufficient 
energy to maintain their complex, rapid, and continuously changing 
signaling roles. This activity to regulate and divert cerebral blood flow 
(CBF) as needed involves interaction between neurons, astrocytes and 
the vascular system and the process has been termed neurovascular 
coupling (NVC).
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Literature Review
The bimodal nature of neurovascular coupling

In brain, it has been observed that there are two types of NVC that 
control changes in CBF [3]. One type is rapid [phasic] in response to 
increased glutamatergic neuron synaptic activity and characterized 
by release of nitric oxide (NO) generated by neuron nitric oxide 
synthase (nNOS) [4] and liberation of K+ and free glutamate (Glu) to 
extracellular fluid (ECF). Astrocytes, a component of the “tripartite 
synapse”, take up Glu and K+ via specific channel transporters: the high 
affinity sodium-dependent ionotropic Glu AMPA transporter subunits 
1-4 (iGluA1-4) [5,6] and the K+ weakly rectifying (Kir4.1) transporter
respectively [7], inducing astrocyte Ca2+ currents and then Ca2+ waves
that activate regional astrocyte syncytium’s. These Ca2+ activated
astrocytes synthesize and release second messengers to the vascular
system via cyclooxygenase-1 (COX-1) and the secondary action of
terminal prostaglandin synthases [8]. Prostaglandin E2 is reported to
dilate capillaries by relaxing capillary endothelial-associated pericytes
and capillary dilation appears to account for about 84% of the increase
in CBF [9]. The neuronal NO (nNO) along with astrocyte NO (aNO)
and vascular endothelial NO (eNO) relax smooth muscles and dilate

Abstract
Neurons, by virtue of their complex and continuously changing signaling roles in brain, must be able to regulate 

access to energy in order to maintain their ability to communicate meaningful frequency-encoded information. This 
is accomplished by release of neurotransmitters to astrocytes that in turn signal the vascular system to increase 
cerebral blood flow (CBF). This process has been termed “neurovascular coupling” (NVC). It has also been observed 
that NVC is bimodal in that there are two separate mechanisms for control of CBF. One type is rapid [phasic] in 
response to changes in glutamatergic synaptic activity and release of glutamate (Glu), K+ and nitric oxide (NO). 
Uptake of Glu and K+ by astrocytes induces Ca2+ waves activating regional astrocyte syncytium have to liberate 
prostaglandins which in turn dilate capillaries by relaxing surrounding pericytes. The NO dilates arterioles by relaxing 
surrounding smooth muscle cells. These agents acting in concert sharply increase CBF within 1-3 seconds. The 
other type is slow [tonic] reflecting ongoing neuronal metabolic activity of all neuron types independent of changes 
in synaptic activity or astrocyte Ca2+ waves and eliciting modest oscillations in CBF in 10’s of seconds. In this 
review, we describe two neuronal signaling mechanisms that match the criteria for phasic and for tonic regulation of 
CBF. The difference is being the nature and source of the “Glu” released and of their targeted astrocyte receptors. 
Dependence on synaptic activity limits phasic responses to gray matter, but tonic responses can regulate CBF in 
both gray matter and white matter and may be the primary regulator of CBF in white matter.
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arterioles [4]. Acting together, NO and prostaglandins generate a phasic 
response to increased synaptic firing, a response characterized by an 
increase in CBF and a rapid positive blood oxygenation level dependent 
(BOLD) magnetic resonance (MR) response. Increases in BOLD and in 
cerebral blood volume (CBV) are initiated in 1-3 s by arteriole dilation 
[10] which appear to precede astrocyte Ca2+ waves that occur in 3-6 s 
[11]. The second type is slow [tonic], independent of synaptic firing, 
without triggering astrocyte Ca2+ waves and characteristic of resting 
state brain activity operating over minutes [3]. These authors estimate 
that about 50% of brain vasodilation is controlled by the tonic system. 
Whereas several trigger molecules were known to control rapid phasic 
NVC, how the brain accomplished slow tonic NVC remained obscure. 
The observed characteristics of phasic and tonic NVC are shown in 
Table 1.

A candidate for control of slow tonic NVC

While a trigger for phasic NVC had been identified with the 
neurotransmitter Glu reaching the astrocyte ionotropic iGluA1-4 
receptor, the nature of the tonic neurotransmitter and its astrocyte 
receptor was unknown. The physiological role of the neurotransmitter 
N-acetylaspartylglutamate (NAAG), with its bound Glu, and its 
targeted astrocyte metabotropic glutamate receptor 3 (mGluR3), was 
also unknown [12-15]. A hypothesis based on the independent findings 
that NAAG peptidase that cleaves NAAG into N-acetylaspartate (NAA) 
and Glu was highly expressed only in astrocytes [16] and that NAA 
acylase that cleaves NAA into aspartate and acetate for recycling 
was highly expressed only in oligodendrocytes [13] suggested that 
NAAG might play a role in neuron-glial signaling for the purpose of 
regulating CBF. Neurons produce approximately 1 molecule of NAAG 
for every 400 molecules of glucose (Glc) oxidized [17]. Based on the 
specific characteristics of the slow tonic trigger [3] and listed in Table 
1, it was recently proposed that NAAG was the astrocyte-targeted 
neurotransmitter for regulation of tonic control of CBF [18]. NAAG 
fits the description closely in that it is directly tied to the rate of Glc 
oxidation rather than to synaptic events, and can be liberated to ECF 
via a non-synaptic mechanism, perhaps associated with the neuron 
membrane ATP-binding cassette subfamily C, member 5 (ABCC5) 
NAAG efflux transporter [19]. Also, its dedicated metabotropic receptor, 
mGluR3 is a G-protein Gi/Go bound receptor negatively coupled to 
adenylate cyclase that does not trigger Ca2+ increases in astrocytes, thus 
excluding its involvement in rapid synaptic events that trigger astrocyte 
Ca2+ waves and release of other NVC agents [20]. In addition, evidence 
of a connection between NAAG and CBF was previously obtained by 
inhibiting astrocyte mGluR3-associated NAAG peptidase activity in 
mice with 2-(phosphonomethyl) pentanedioic acid (2-PMPA) and 
observing that there was a prolonged global drop in the BOLD signal 
of about 3% [21]. 

The nature of the BOLD signal

The BOLD signal is an MR water signal that is diminished by an 
increase in red blood cell (RBC) paramagnetic deoxyhemoglobin (Hb) 

resulting from the drawdown of O2 from RBC oxyhemoglobin (HbO2) 
by activated neurons [17]. Thus, the BOLD signal varies inversely with 
RBC Hb levels, and the signal increases as CBF increases bringing a 
fresh supply of HbO2 and reducing Hb levels. Therefore, the decrease in 
the BOLD signal in the case of inhibiting the action of NAAG peptidase 
was interpreted as a lack of increase in CBF and a sign that a normal 
NVC mechanism had been uncoupled to some degree by blocking the 
release of Glu at the astrocyte surface [21]. 

Uncovering the multicellular genesis for obtaining sufficient 
energy and oxygen during rest and any level of spiking activity 

The brain is the most complex organ in the body and the physiological 
function of neurons is to transmit meaningful information in the form 
of encoded spike frequencies. In order to do this neuron must maintain 
a state of constant readiness. The brain while only about 2% of body 
weight uses approximately 25% of its daily energy intake [22]. In 
addition, the heterogeneity of neuronal cells and regions that comprise 
the brain is such that the needs of even very small regions of brain may 
change quickly over time and in a highly variable temporal fashion. 
To deal with such a complex organization both locally and regionally, 
it is vital that neurons which have limited energy stores are able to 
continuously signal their needs to the vascular system. As described, 
they do this by liberating specific neurotransmitters to astrocytes whose 
end feet are in close contact with both neurons and the vascular system 
endothelial cells. The mechanism for rapid “phasic” changes in focal CBF 
has been identified with glutamatergic synaptic release of Glu and K+ to 
astrocytes. A second method “tonic” has also been identified (Table 1) 
that does not depend on spiking, and is associated with housekeeping 
activities such as synthesis of proteins and the myriad metabolites that 
sustain their ability to carry out their signaling functions [3]. In this 
short review, evidence is presented that phasic changes in brain CBF 
are a function of glutamatergic synaptic release of K+ and of Glu that is 
targeted to an astrocyte ionotropic Glu receptor, and that tonic changes 
in CBF are a function of non-synaptic release of peptide-bound Glu 
by many neuron types in the form of NAAG targeted to an astrocyte 
metabotropic Glu receptor where the Glu is liberated by the action 
of NAAG peptidase. This process is highly complex and involves the 
coordinated activities of neurons, astrocytes, pericytes, smooth muscle 
cells, vascular endothelial cells, and oligodendrocytes. The multicellular 
genesis of these two NVC control mechanisms is presented in Table 2. 

Discussion 
In this review, we present evidence of two separate mechanisms 

used by neurons to communicate their needs for increased energy. One 
is phasic in response to rapid changes in signaling activity that results 
in increases in CBF in 1-3 s. The other is tonic that results in increased 
CBF in 10’s of seconds to minutes. Both appear to use neuronal “Glu” 
transmitted to juxtaposed astrocyte endfeet that in turn signal a neuron’s 
metabolic requirements to the vascular system. Phasic NVC uses Glu 
leaked from synapses and activates the astrocyte ionotropic iGluA1-4 
receptor, initiating astrocyte Ca2+ waves and release of prostaglandins 
and NO that rapidly increase CBF in a region of increased spiking. 
While the nature of the tonic transmitter is still open, we proposed 
that the non-synaptic release of NAAG, a non-excitatory form of Glu 
targeted to the astrocyte metabotropic mGluR3 receptor, matches the 
criteria for the tonic transmitter as shown in Table 1. After docking with 
the mGluR3 receptor, NAAG is cleaved by astrocyte NAAG peptidase 
forming Glu which then can activate astrocytes without initiating 
Ca2+ waves, to release prostaglandins that increase CBF. This bimodal 
mechanism is unusual in that it appears to use two distinct forms of 

Characteristics Rapid phasic NVC Slow tonic NVC
Synaptic firing Dependent Independent

Astrocyte Ca2+ waves Yes No
Timeframe 1-3 Seconds 10’s of seconds

BOLD response Rapid large increases Slow small oscillations
Capillary dilation Yes Yes
Arteriole dilation Yes No

Table 1: Characteristics of phasic and tonic NVC in brain.
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the neurotransmitter “Glu”, two different release mechanisms and two 
types of Glu receptors in order to signal astrocytes to increase CBF. In 
gray matter, the actions of these two systems cannot be separated in 
time or space and both systems may interact with astrocytes at all times. 
However, in white matter, the dearth of synapses precludes strong 
phasic responses to signaling and it is likely that only the tonic system 
is responsible for maintaining substantial neuron axon metabolic 
requirements. Failure of either the phasic or the tonic system to supply 
adequate levels of energy to neurons and their axons in a timely manner 
could lead to a chronic lack of energy and inability to transmit a full 
range of meaningful frequency-encoded information. The functions 
of the mGluR3 receptor and NAAG peptidase have recently been 
associated with several human brain disorders including Alzheimer’s 
disease, Parkinson’s disease. Huntington’s disease, cognitive loss, and 
neuropsychiatric disorders, and are current targets for therapeutic drug 
interventions [23]. Availability of adequate energy in both gray and 
white matter is the critical factor for normal neuron function. 

Conclusion
We hope that this review is helpful in understanding the many 

facets of this developing story and that it leads to new approaches to 
understand the etiology of brain disorders. In summary, we postulate:

1. There are two mechanisms controlling NVC, one rapid [phasic] 
and one slow [tonic].

2. Phasic NVC is associated with the rate of synaptic spiking and 
tonic NVC is associated with the rate of neuron Glc oxidation.

3. Both mechanisms use the neurotransmitter “Glu”; phasic in the 
form of free Glu, and tonic as NAAG bound Glu.

4. Both neurotransmitters target astrocytes, the key component in 
NVC.

5. They are targeted to different Glu receptors on astrocytes, phasic 
to an ionotropic receptor and tonic to a metabotropic receptor.

6. Both mechanisms can operate in gray matter, but only tonic in 
white matter.

7. The NVC neurotransmitter in white matter is likely NAAG which 
is present in highest concentrations in axons and can be released to 
astrocytes non-synaptically at nodes of Ranvier.

8. Failure of either mechanism to supply adequate energy as needed 
may be reflected in a variety of brain signaling and metabolic disorders.
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