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Abstract

We completely resolve the boundary value problem for differential forms for conformal Einstein infinity in terms of
the dual Hahn polynomials. Consequently, we present explicit formulas for the Branson-Gover operators on Einstein
manifolds and prove their representation as a product of second order operators. This leads to an explicit description
of Q-curvature and gauge companion operators on differential forms.
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Introduction

The boundary value problems have ever played an important
role in mathematics and physics. A preferred class of boundary value
problems is given by a system of partial differential equation on
manifolds with boundary or submanifold equipped with a geometrical
structure. The representative examples are the Laplace and Dirac
operators on Riemannian manifolds. A closely related concept is then
the Poisson transform and boundary (or, submanifold) asymptotic of
a solution applied to this system of PDEs, [1] for the case related to
compactifications of symmetric spaces.

Fefferman and Graham [2] initiated a program allowing to view
any conformal manifold as the conformal infinity of associated
Poincaré-Einstein metric. Boundary value problems on the Poincaré-
Einstein manifolds with prescribed boundary data are referred to as the
boundary value problems for conformal infinity. It is a remarkable fact
that solving such a boundary value problems leads to an algorithmical
(or, recursive) construction of a series of conformally covariant
differential operators on functions, spinors and differential forms [3-5].
Note that these operators were originally constructed using the ambient
metric of Fefferman and Graham and tractor bundles, cf. [6-8], and
were soon recognized to encode interesting geometrical quantities like
Branson’s Q-curvature [9] or holographic deformations of the Yamabe
and Dirac operators [10,11], and their functional determinants play a
fundamental role in quantum field theories.

Assume now (M, h) to be an Einstein manifold. The main result
of the present article is the complete and explicit solution of the
boundary value problem for conformal Einstein infinity for the Laplace
operator acting on differential forms. More presicely, we reduce the
eigenvalue problem to a rank two matrix valued system of four step
recurrence relations for the coefficients of asymptotic expansion
of the form Laplace eigenforms. This combinatorial problem can be
resolved in terms of generalized hypergeometric functions, closely
related to the dual Hahn polynomials. The results analogous to ours
were obtained for scalar and spinor fields [2,12]. The key property of
reducing the boundary value problem for conformal Einstein infinity
is the polynomial character of the 1-parameter family of metrics given
by the Poincaré-Einstein metric. As an application, we produce explicit
formulas for the Branson-Gover and related Q-curvature operators on
differential forms on Einstein manifolds and derive their factorization
as a product of second-order differential operators.

Let us briefly indicate the content of our article. The Section 2 is
combinatorial in its origin with some implications to hypergeometric
function theory. We introduce three series of polynomials s, s and
s of degree meN, depending on spectral parameters. Their origin is
motivated by the examples given in Subsection 3.2. We prove that s’
satisfy a three step recurrence relation, cf. Proposition 2 and 2, while
Sﬁ} ) turns out to be a linear combination of sif) for k=m, m—1,m-2,0,
see Proposition 2. By a cascade of variable changes, we identify s'" and
s as (alinear combination of) generalized hypergeometric functions,

m

in particular s, are given by the dual Hahn polynomials.

In Section 3, we briefly recall the boundary value problem for
conformal infinity. First of all, we determine in Proposition 3.1 its
solution in terms of solution operators when the conformal infinity
contains the flat metric. Then we prove in Proposition 3.2 that the
polynomials s and s!” mentioned above are the organizing frame

for the solution as far the conformal infinity contains an Einstein
metric.

In Section 4, we discuss emergence of the Branson-Gover operators
in the framework of solution operators. Furthermore, we prove in
Theorem 4 that Branson-Gover operators satisfy a two step recurrence
relation which immediately leads to their factorization (or, the product
formula) in terms of second-order differential operators, cf. Theorem
4. Finally, we discuss explicit formulas for the gauge companion and
Q-curvature operators.

In Appendices 5 and 6 we collect some standard notation, results
and properties concerning generalized hypergeometric functions and
Poincaré-Einstein metric.

Some Combinatorial Identities

In the present section we discuss some special polynomials
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characterized to satisfy certain recurrence relations. When changing
the polynomial variable by a second order differential operators,
they are used in Section 3.2 to determine solution operators for our
boundary value problem.

Let y be an abstract variable and define the set of polynomials
R (y;a),
S, = 2m (5= A=m),  (“5=m=1), R (;0) (1)
0
of degree keN and depending on a parameter ae R. Conventionally,
we set R (y;a):=1.

Remark: We notice that some versions of the polynomials R,(y;0)
have already appeared in the description of the scalar and spinor
boundary value problems [2,12].

Later on, it will be important to consider R,( -;a) in the variable
y(y+1),

R (y(y+1);0)=(-1)(—y-a) (y+1-a), (2)

for all keN. Here we already used the notion of Pochhammer
symbol, as reviewed in Appendix 5. Furthermore, we introduce the
polynomials
sO0)=dm (G-
k=0 &

= 3COmR, (7:0), 3)

k=0

A-m), (~£-m-1), R (»;0)

5= m G=a=m), (-5 -m+1), R (7;0)
k=0
k

=53 CLmR, (350), )

for meN and two parameters B,AeC.

We shall now observe basic recurrence relations satisfied by s'~
)
and s,

)

Proposition: The collection of polynomials an_ ,meN, satisfies

the following recurrence relation

sy () =Ly +2m(A+m)+ £ -5 =D\ ()
~(m=1)(2+m)(A—=5+m=1)(5+m)s,(»), (5)
s5(1)=0

Proof: The identity

R, (50)=[y-k(k+1)IR,(y;0)

for keN, leads to

with s () =1,

[y+2m(A+m)+5£ (A -5 -1)s{2 ()
= EC£*>(m =Dy = k(k +DIR,(»;0)

Cc )(mfl)[(Zm(/l+m)+ﬂ(/1 -+ k(k+DIR,(»;0)

Ms 1M§

C(m=1)R,(;0)

=~

CO(m—1D)[2m(A +m)+ ﬁ(ﬂ—f—1)+k(k+1)]R (»;0).

k=0

Therefore, it remains to compare the coefficients by R, (y;0) on both
sides of (5), which is equivalent to the following set of relations among

)

G (m)=C(m=1),
L\ (m) = Cy(m 1)
+C (m=1D)[@m(A+m)+ LA =5 =1)+ m(m-1)],
G (m)=Cl(m~1)
+C7 (m=D)[@m(A+m) +5(A =5 —1) +k(k +1)]
—C7(m=2)[(m—=1)(A+m)(A =5 +m=1)E+m)],

for all keN, such that k<m-2, and CY(m)==0 for all meN,. These
relations can be easily verified using the identity

-1 ( -A- m+l)m,r(—7—m+l—l)m I
COm—1)=—-~" CO (m)
m (G=A=m), (~5-m-1),, ‘
k
with I=1,2 and r=0,...,m—1. This completes the proof.

(+)

Proposition: The collection of polynomials S meN, satisfies

the recurrence relations
SO =ly+2m-D(A+m -1+ 2L+ 1) ()
~(m=D(A+m=2)(A=5+m=D)G+m=2)s,"(y), ©)
with 57 (») =1, s ()=

Proof: It is completely analogous to the proof of the previous
proposition. The claim is now equivalent to

G, (m)=C,2 (m-1),
G, (m)=C,,(m~1)
+C (m=D[Qm-D(A+m =)+ LA =L +1) + m(m -1)],
Cili(m=1)

DIQm-1)A+m—-1)+E(A -2 +1)+ k(k +1)]

e -
+C 7 (m -

—COm=2)[(m-1)A+m=2)A—-L+m-1)(E+m-2)],

for keN such that k<m-2, and C'(m):=
these identities hold due to

0 for all meN,. However,

m=1 E-2-m+D), , (~Z-m+i+1), .,
CO(m—1)=—-7" C(m)
g (g_l_m)m—k(_/?_m_'—l)mfk !
k
with /=1,2 and r=0,...,m—1. This completes the proof.
Furthermore, we introduce another set of polynomials:
k

RO =2 (G —k+j+ 1)y (v =5+ DR, (v:h) )

Jj=1

of degree keN, and set the convention R{"(y):=0
Proposition: The polynomials R, (-;0) and R'V(.) are related by
R,(3:0)=R)(3)+(5=m+1),,, ®)
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forall meN,.

Proof: The left hand side is a polynomial in y of degree m, and so
is the right hand side. Hence, it is sufficient to check that both sides of
this polynomial identity have the same value at m+1 different points.
To that aim, we choose the m-tuple i(i—1), i=1,...,m, of the roots of
R (y;0). We note

m

RV =1) =Y (-1) (G =m+ j+1)y, ;X
j=1

x(§+i)(g—i+1)ﬁ[(m—1+i)(m—1—i+1)],

and the standard combinatorial identities

B . j m+1)2m

(7—m+J+1)2m_2, (-1 W’
(ifmﬂ) .(757m)j

-1

[((m=I+D)(m—-1-i+D]=(m—i+]1), (-m+i),,

1

allow to obtain

m-H)/ 1

R(‘)(l(l l)) (——m+1)2m(—+l)(__l+l)z( mi+l) 1(ﬁ

7=l (7—m+l) (- m)
Hence, our claim is equivalent to
o (m=i+]) (-m+i)  (B-m+1)(=5—m)

Z(é—m“‘l),’fl(—g—m)ﬂ (§+i)(§—i+1)

J=1\2

for all i=1,...,m. The identity
1 (-m—i+1),(-m+i), B (—m—i+l)j,1(—m+i)j,l]
E+)E-i+l) E-m+1), (-L-m),, E-m+1), ,(-5-m) ,

_Cm=it ), m+D),
(g—m+l),>1(—g—m),>1

implies that our sum is a telescoping sum, and the only term which
survives the summation process is

Zm:(—m—i+1),,,(—m+i)/,, _ 1 1
= G-m+l) (~Z-m),,  (G+DE-i+D)E-m+2) (-5 -m+1),

j=1

_ E-me(5-m)
(G+i)(5—i+1)
because i=1,...,m. Finally, for the last evaluation point of our
polynomials we take g(g +1):

s

for

R, GG+ 150 =T[GE +D-10-1)

R0 =E-m+1), [y-4(&+1)]
m+1

+Z(§ =M+ )y X[V - g(% +DIR, ,(y;m+1),

We substitute

R, \(ysm+1)=[y—m(m+D]R, ,(y;m)

and shift the summation index. This yields

R ()= G =m+1),, [y =5 G+ D]+[y = mm+ DIR,(y),
which completes the proof.

Finally, we introduce the set of polynomials
PN =ym (A=5+k+1), (G+k+1), X

k=0

k
X[k(ﬂ +ﬂ+ 2m)+§(,7, —ﬁ_zm)]R](cl)(y)

= i‘p;” (mRV(») (10)

of degree meN;, and we remark that 5{"(y)=0.

Proposition: The set of polynomials s(l) , meN_, satisfies

S (1) = (=B +2m)s}) (v) = 2m(2+ 2m)(A =5+ m)s; ), (v)
+m(m=1)(A+ B +2m)A =5+ m—1),5.7,(»)
~A) (A= BBy (). (11)
Notice that s\ (y)=1.

Proof: By Proposition 2 and Lemma 5, we have

sy (1) =2 DO (mR (1:0) = D D (m)(5 —k +1),,
k=0 k=0

- gDz”(m)Rk(y;m — (D, (2= B,
Comparision of the coefficients in Equation (11) by R (y:0) gives
DY (m) = (A= B+ 2m)CS (),
DY\ (m) = (2 B+ 2m)CL (m) = 2m (A + 2m)(A— 2+ m)C, (1),

DY (m)= (A= B+2m)C7 (m) = 2m(A+2m)(A—45+m)C” (m-1),
tm(m -1+ f+2m)A—L+m—1),CO (m-2),

all keN  such that k<m-2. Checking these identities is

straightforward and the proof is complete.

Hypergeometric interpretation of combinatorial identities

In this subsection we interpret our polynomials s as the dual

Hahn polynomials, cf. Appendix 5. The key step is to apply the variable

= H((§+l)(§—l +1))=(G-m+l),,, y(y+1) to the polynomials R (), cf. (2). Furthermore, it follows

= from Proposition 2 that sP(»(y+1)) is a linear combination of the
which is exactly RO(Z(£+1))+(£-m+1),, , since R (g (g +1))=0. dual Hahn polynomials with y-independent coefficients. This linear
This completes the proof. combination can be rewritten as a sum of a hypergeometric polynomials

Proposition: The set of polynomials Rfﬂ”, meN,, satisfies the
following recurrence relations

of type (4,3) and (2,1) or, equivalently, as a linear combination with
y-dependent coefficients of two dual Hahn polynomials.

Firstly, we observe that by standard Pochhammer identities our

R =y =m(m+DIRY (9)+(F=m+1),,[y-5(G+D]. ) polynomials s, are given by generalized hypergeometric functions
of type (3,2):

with RV(»)=0.

Proof: The proof is straightforward. Starting from

ylw}

() B B
GO+ =E+2),(A-5+1),, {ﬂ S Gy
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-m,—y,1+y
S +1) =), —é’+1)mx3F{ 7 ha ;1},
2° 2

and hence we can express them as the dual Hahn polynomials,
S G+ = (542, (A=5+1), xR, (y(y + 15 +1,-1-5.5 - 2),

m

SO+ =), (A-5+1), xR, (p(y+ 15 -1,1-2,2 - 2).

When choosing 4 = g — N for some NeN, g— A =N becomes a
positive integer, as required by definition of the dual Hahn polynomials.

Remark: One can easily realise that there is no hypergeometric series
representative for s”(y) . For example, the subleading coefficients in
such an expansion do not factorize nicely into linear factors. Moreover,
the quotients of successive coeflicients are not rational functions in the
summation index of the hypergeometric series (which is, in fact, the
defining property of a hypergeometric series).

Secondly, as a consequence of Proposition 2, the polynomial s s
a linear combination of generalized hypergeometric functions of type
(3,2) and (2,1),

sf:><y(y+1»=u—§+1)m[u—ﬁ+2mx§+2)mx;Fz[_m’_y’””}

1
L) B 5

-m+1,-y,1+
—2m(ﬂ+2m)(f+z>mlx3f;{ SO }

s B>
F+2,A-5+1

-m+2,-y,1+
+m(m—1)(/1+ﬂ+2m)(f+2)m2><3F2|: " Y y-}

B B ’
S+2,A-5+1

B

-m,—=+1

SRS (12)
A-5+1

Notice that the coefficients of previous linear combination are
y-independed.

~(A=P)E), % F, {

. - 0
We were informed by Christian Krattenthaler that our S»" can
be organized by the following two expressions based on various
generalized hypergeometric functions:

Proposition: The set of polynomials s.,’, for meN, has the
following descriptions:

S+ =(A=2+1),(5),[(A- p-2m)x, F}[HY —m.=y, 1+y,]}

7,241, a-2417

A-Z+1

2

-m. =L
—(ﬂ—ﬂ)sz{ '”’/”;1}1, (13)

where y := 25720 Additionally it holds
-m,—y,l+y
an”(y(yﬂ))—(l—f+1)m(f)m(l—ﬁ—2m)X[3F{/ZHJ_/ZH;I}
2my(y+1)(A+f+2m) 1—m,1—y,2+y‘ 1
pEaa-Lnpom P L42,1-L427
A-Lal) (&) (A m. =gt (14)
-A-5+1),(5), (A=) x, K A-L41 31,

where the coeflicients in the linear combination (14) are y-depended.

Proof: The proof of Equation (13) is based on the elementary
identity

(A= B+2m)E+2),(=m), —2m(A+2m)(5+2), ,(1-m),

+m(m—1)(A+ B +2m)L+2), ,2-m),

=1L(B+2k+2) (= + 2Bk + AB+22k =2 fm+4km) (L +2), ,(~m),

(y+1); (=m)
=(5), (A= -2m)T=5—+

IRCEN

Dy
The standard Pochhammer identity (f;)k)‘ =1+£ allows to

decompose our generalized hypergeometric function ,F, into two
summands, which lead to Equation (14). The proof is complete.

Boundary Value Problem for Conformal Infinity

We start with a brief reminder about the boundary value problem
for conformal infinity and the Laplace operator acting on differential
forms, [5]. Then we proceed to its complete solution in the case when
the conformal infinity contains the flat or an Einstein metric.

Let (M,h) be a Riemannian oriented manifold of dimension n >3.
Note that all statements given below extend to the semi-Riemannian
setting by careful checking the number of appearances of minuses
induced by the signature. The differential d:QP(M)—Q"'(M) has a
formal adjoint given by the codifferential §"=(—1)?*!( x")'odox" when
acting on p+1-forms. Here we denoted by +":Q(M)—Q"#(M) the
Hodge operator on (M,h). The form Laplacian

A=d8"+8"d: Q" (M)—->Q (M)
is formally self-adjoint differential operator of second order.

Consider the Poincaré-Einstein space (X.g,) associated to (M,h),
see 6 for the description of its construction. A differential p-form w on
X uniquely decomposes (note a different convention compared to ref.
[5]) off the boundary as

(+)

0= O, (15)

+L A0
for differential forms 0®eQ?(X) and w e (X) characterized by
trivial contraction with the normal vector field 0. It is straightforward
to verify that the form Laplacian on X acting in the splitting (15) is

A — —(r0,)* +(n—2p)ro, 2d
0 ~(r0,)" +(n+2-2p)ro,

—rd, (x" ) '[0,, %" 1]

N PA" —r(*h’ )"[Br,*h" Jro,
PPA" =0, (x") 0, ]

J:P+P', (16)

Here *hr and 8" denote the Hodge operator and codifferential
with respect to the 1-parameter family of metrics /i, on M. In the case
when 7 is odd, the form Laplacian can be expanded as a power series
around r=0, while in even dimensions # there appear additional log(r)-
terms coming from the Poincaré-Einstein metric, cf. [5].

For AeC, we consider the eigenequation

A%0=An-2p- Ao 17)

with w a p-form on X. The boundary value problem for conformal
infinity consists of finding an asymptotic solution w € Q*(X) of Equation
(17) with prescribed boundary value ¢ € ¥?(M). The construction of a
solution for this boundary value problem is algorithmically described
in ref. [5]. For a manifold with general conformal structure (M,h),
this algorithm is quite complicated due to the complexity in the
construction of the Poincaré-Einstein metric. As we shall see in next
subsections, there is rather explicit solution when the conformal
infinity is metrizable by the flat or an Einstein metric.
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Conformally flat metric e ~(r0.)* + Bro, 0 N A4 4
Let (M,h)=(R", (,-) ) be the euclidean space. Then the associated 0 ~(r0,)* +(B+2)ro, A A)
Poincaré-Einstein metric can be realized as the hyperbolic metric b
where

=x2(dx2, +h)

n+l
on the upper half space R”}'. Consider the asymptotic expansion of a
p-form on R™! R"*', given by

(+)
0= n+1 zxnﬂa) + /\ zxnﬂa) (18)

j20 j20

for w ' eQ”(R") and a)( e Q' (R"). Formally, one can solve
Equat1on (17) for a given 1n1t1al data @{” =@ e Q”(R") in terms of
the solution operators

77 (2): Q"(R") > Q"(R"),

T, (2): Q" (R") » Q"' (R"), (19)

which are h-natural differential operators with rational polynomial
coefficients in A determining @{} =7, (1) and o)) =T,7' (e
uniquely for all jeN,. Notice that the solutlon operators turn out to be

well-defined for A #%— p — j and A#f, and by construction w!? =0
forjeN.

Remark: Due to the absence of curvature, the solution operators
T;ji)(ﬂ.) are given in terms of §"(dd"y~, (8"dy and (dé"y.

Proposition: Let (M,h) be the euclidean space (R"(:,-)). Then

5"(ds"),

T(f)(ﬂ, = 1
2 D= G020 (A 2p)

T =

4/ j](l*"%zlli»l)j(lfu*»zp)

[(A—n+2p)S"d) +(A—n+2p+2,)d5")]

for all jeN, and 7,7(1)=0, 7,”(A)=1d .

Proof: For (M,h)=(R"(-,-)) and r=x
, A0

r x’f*‘[zéh Ah}

where all operators are considered with respect to h=(:,-). The ansatz
(18) solves Equation (17) iff the following system is satisfied:

P', see Equation (??), reduces to

n+1’

[(2j=-2)QA-n+2p+2j-2)+2(A-n+2p+2j-2)]a!; *A"wé;lz-t—Zﬁ"a);)z,
2jQRA-n+2p+2j)asy) =N, +2daf)
for jeN and o’ € Q”(R") arbitrary, while @{’=0. It is now

straightforward to check that the solution operators satisfy the
recurrence relations and the proof is complete.

Conformally Einstein metrics

Let (M,h) be an Einstein manifold normalized by Ric(h)=2A(n-1)
h for some constant AeR. This implies that the (normahzetp sc;l];e’lr
curvature and the Schouten tensor are given by J=nA and
respectively. In this case the Poincaré-Einstein metric is of the form

g, =r(dr+J(r)*h), (20)
for J(r):=(1-%r

can explicitly compute the form Laplacian, especially the term P’ in
Equation (??). From now on we use the abbreviation f:=n2p.

?). The polynomial type of J(r) implies that one

Lemma: Let (M.h) be an Einstein manifold, normalized by
Ric(h)=2A(n—h)h. Then in the splitting (15), it holds

A =rJr) A"+ ﬁfer(r)'lrar,
4,=2(1+Lr)J(r)'d,

4, =2r(1+ L) J ()38,

A, = er(r)’zA" +(f+ Z)fer(r)’z(Z +J(r)ro,).

Proof: The explict formula for hw cf. (20), leads to the explicit form
of Equation (??). In more detail, we note

() = I () +" (),

for ne(M). Hence, we get on p-forms

8" = (1) (k) od ok

= (=D I (%) ed ok, = J ()78,

which implies A =J (r )72Ah. Furthermore, for p and (p—1)-forms
w™®,wO as introduced in (15), we have

F(" )0, %" 11,0 = = BLI(r) 0,0

Hd, (") [0, " NN =222 (r) 'de"”,
o™ =277 (+<Lr N ()6 o'

0,(x")'[ro, ,x " 10 ) = (B +2)r* LI (r) 22+ J(r)rd, ).

The result then follows from (2?).

The eigenequation (17), acting in the splitting @~
equivalent to the system

MP =)@ +(r0,) 0 — (B +2)ro,w")

=21+ £ J (1) 8" + I (r)? A

HPB+2)Er?I(r) 07 +(B+2)Lr’ I (r)'r0,0", (21)
A -1 +(r0.) @ - pro,o"

=21+ £ ) () do” + () A 0 + B () 0,0 (22)

Using the polynomial type of J(r)=1-+r*, we multiply Equation
(21) by J(r)* and Equation (22) by J(r)*. As a result, the coefficients in
both equations are polynomials of degree 3 and 2 in % respectively.
This is the key step to formulate

Proposition: Let (M,h) be an Einstein manifold with the
normalization given by Ric(h)=2.(n—1)h for a constant JeR. The
eigenequation (17) acting on

0= Zr‘*fa)ﬁ*) +4& A Zr‘*fa)ﬁ’)
7>0 >0
for some (unknown) differential forms !’ eQ’'(M) and
o7 e QP7Y(M)» is equivalent to the following recurrence relations:
J

AW = B (W, + C (L) W, + Dy () ! + A, — LA,
28" W, +2(£)8" W, (23)
aw)” =b,GOWh + e, G Wl + Al +2dw -2 dwi, (24)
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with coeflicients
A= -D(B-24-j+D)+2AF-A-j+2)]
B =3[(j =B 24— j+B+2AB-A— j+D]+2B+2)(A+)),
C, =3[ -6)(B-24-j+6)+2B-A—j+6)]-4B+2)(A+j-3),
D, =~ -8)(B-2A-j+8)+2(B-A~j+8)]+2(f+2)(A+j-6),
a; ==j(B-24-)),

=2[(j-2(A+ -2+ AP+ j-2)],

¢ = —QA+ B+ j-4), (25)
depending on jeN, p=n-2p, AeC, and the initial data @}’ =0 and
of” e QP (M) . Furthermore, it holds @}, =0 for all jeN.

Proof: Due to the polynomial type of the coeflicients in Equations

(21) and (22) after multiplication with appropriate powers of J(r), and
the ansatz for w, we obtain the recurrence relations by comparing the

coefficients by 7/ for jeN,. Based on @}~ =0 and eveness of involved

coefficients in 7, we get @}, =0 for all jeN. This completes the proof.

In order to getan insight into the solution structure of the recurrence
relations (23) and (24), we present several low-order approximations:

Second-order approximation: The relation (23) for j=2 gives
201- B =25"w(?,

and (24) for j=2 implies

422 - B+2)(A-Bal” =2(A - BRV " +2(A - B +2)RP &

+2QA-B+2)(A- B L’ (26)
for

R2QRA-L+2)A-P)SE s

Hence a)( ) are well-defined for A # 2 —1 , P . As we will see later,

for 2 =£ _1¢ the right hand side of Equatlon (26) is proportional to
the second-order Branson-Gover operator.

Fourth-order approximation: The relation (23) for j=4 gives
424 - +2)(A- o’ =2RV8 0" +2Q21 - B+2)(B+ (L) o
in terms of the operator

R =0"d+5(5+1)2

The relation (24) for j=4 reduces to

16QA - B+HQ2A- B +2)(A - Pal”

=2(A-BRV " +2(A - B+ HRP &

+H4Q2A - B+4)(A - BB +2)(L)R )

QA= f+ DR B+4)+ B BIER o)

+2Q22 - f+H2A - f+2)(A-PBB+2)) o), (27)
where

R :=[6"d + (5 -D)EH["d + (5 -2)(5+ 1],

RY =25+ 1)(E)dS" +ds"[ds" +(5-1)(4 +2)2].

Hence @." are well-defined for 21#£-1,£-2,4 . For A=4-2
the right hand side of Equation (27) is proportional to the fourth-order

Branson-Gover operator.
Sixth-order approximation: The relation (23) for j=6 gives
1624 - B+2)2A- B+ 4)(A - Bal”’
=2RV"S" 0 +4Q2A - B+4) (B +6) (LR
+2QA = +2)2A- B+ AL+ B +6)5) 5" @
in terms of
RY :=[6"d + L5+ 1) 2][8"d + (5 -1) (& +2)2].
The relation (24) for j=6 yields after some computations
9621 — B+ 6)2A - B+ 424 - B +2)(A - B’
=2(A-BRVa” +2(A - B+6)RP "
+6(24 - B+6)(A— BB+ HLR
+6(2— B+ 6)[4(A— B+6)+ B(A— B+ 2)(L)RPa)”

+6Q21 = f+6)2A = f+ (A= AL +2)(B + ;) R @
+6(24 — B+ 6)2A — B+ 424~ B+6)+

B~ B~ DNB+ L) RV e
+22A-p+6)21- B+ ‘f)f% B+ 2)(1 BBPB+(B+A(E) o (28)

expressed in terms of operators
R =[6"d + (5 -1)5H[5"d +(&
RY = -DELE+1)E+2)E)ds" +£(E+1)2ds"ds" +(£-2)(5 +3)2]
+dd"[dS" + (& -1)(4 +2)2][ds" + (5 -2)(5 +3)2].

Hence .- are well-defined for A # g - l,g 2 g -3,p. For

4=£-3 the right hand side of Equation (28) is proportional to the
sixth-order Branson-Gover operator.

)+ D[S + (4 -3)5+2)2,

The previous approximations indicate the following definition of
the solution operators:

m—1

T, =[(A- ﬂ)HaZk &) s (e s,

T () =[(A- ﬁ)Hau CH"(A =P ) +sV (M), (29)

for meN. Here we have taken the evaluation of the polynomials s
and 5, at

YO =5+ LG+,

Y =5 SE -,

y O =2ds" + 54 +1).

Remark: The inspiration for the definition of 7,\” (1) comes from
the scalar case, cf. [2]. The reason is that for 0-forms, Equation (23)

becomes trivial and 77 (1)=0, while Equation (24) is solved by
T (A) with vanlshlng term s\

The proof of the next theorem is mainly based on the combinatorial
identities discussed in Section 2.

Theorem: Let e Q’(M) and 4 #2-N for all NeN. The
solution of the recurrence relation (23) and (24) is given by

5 )
o, =T, (D",

oy, =T," (D",

(=) —

for all meN and boundary data {” =0, &’ =¢.
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Proof: In order to shorten the notation, we introduce -1 Bﬁ;[ﬁ Shd — 1C,] 5O ()
B® =[(1- a, T . _ _
vl A o] B, ()
First of all, we verify the recurrence (24). In terms of solution B o “ 5
operators, it reads +2B,7s5,.,(v'"7)+ 28,2 (4),, (A= B)Z),
a,, T (2) = by, (T, (A) + ¢, (£ T (A + AT () +3B s, (V) +3B % (A), (A= B)E), s (33)

+2dT,7 () - 2(L)*dT, 5 (D).

m

This can be decomposed, due to d*=0=(8")* and dealing with dé"
and d"d as independent commuting variables, into two independent
claims. The first is

a,, B () = B[ 5" d+1b,, 157, (07) + Ly, B, (7). (30)

m-1
while the second is given by

) D,y = pH) h 1) (1) (+) (D) (1)
a,,B,’s, (v )7Bmtl[%d§ +%b2m]s (6% )+ﬁcsz 28> (V)

m—1 m—

+B,\ (A= B)37d8"s, 2, (»)

+2B), 25ds') (v )" = 1B s, (v )5 (31)
Note that

(+) — R
ay B, =B,

1b, =2m-1)(A+m-1)+22,

e,y = —(m=1)(A+m=2)A=L+m-1)E+m-2).

We first notice that Equation (30) was proved in Proposition 2.
Now we proceed to Equation (??). By (§")*>=0 and Lemma 5, we have

8" () = s (B (G -1)dS" = (2),(5),d8".

Furthermore,

dsg ()" = d&"s” (v

for all keN. Applying Proposition 2 to s\’ (»"), for k=m,m-1,m-2,
allows to rewrite Equation (??) justin terms of s\ (y"") for appropriate
collection of values of k. It turns out that Equation (??) is equivalent
to the three-times repeated application of the recurrence relation in
Proposition 2 to

A-p+ 2m)s(’) (y“)) —2(m—=1)(A+2m—-2)(1 7§+ m 71)s(’)(y“))

m+1 m
Hm=1)(m=2)(A~ B +2m—4)(A~5+m~2),5.2, ("),
which finally proves Equation (??).
Now we proceed to prove

4, T,7(A) = B, DT, (D +C,,, ) T, (D) + Dy, (37 T,75(4)

2m*m 20

+A"T () = (DA"T, () + 28" T () + 2(L)S" TN (). (32)

m—1 m—1 m-2
Using two ingredients: due to (§")>=0, we have
NTO(2) = 5T (),

5" (") = sV ()5
and due to Lemma 5, we get

k
5"y (V) =D CV(R)E~ 1), 8" = (A1), (58",
=0
we see that Equation (32) is equivalent to
4,875 (v 7)) = By [356"d + 1B, 15,0, (7))

m m-1

We replace the terms s () and s, (7)), using Proposition
2,by s;”('”) for appropriate collection of values of k. Then it turns
out that Equation (??) is equivalent to the two-times application of the
recurrence relation in Proposition 2 to

Sr(ni) - a2/n—4sft;—)l .

This proves the theorem.

Applications: Branson-Gover operators on Einstein
manifolds

This section is focused on the origin and properties of the Branson-
Gover operators and their derived quantities on Einstein manifolds.
In addition, we present another proof of a result in ref. [13] on the
decomposition of Branson-Gover operators as a product of second-
order differential operators.

Let (M,h) be a Riemannian manifold of dimension #. For p=0,...,n
the Branson-Gover operators [8] are differential operators

L7 Q7 (M) —> QF (M)
of order 2N, for NeN ( N < £ for even n), of the form

L) = (222 + N)(3"d)" + (52— N)(ds")" +LOT,

Where LOT is the shorthand notation for the lower order
(curvature correction) terms. They generalize the GJMS operator [6]

P, =(A"Y +LOT:C* (M) — C*(M)
in the sense that L)), =(- N)P,,. The key property of Branson-
Gover operators is that they are conformally covariant,

N)a, oeC”(M).

(G-p+N)o A (G-p-
g = g
Here * denotes the evaluation with respect to the conformally

. » . . n
related metric /= ¢k . In the case of even dimensions nand P <7,
the critical Branson-Gover operators factorize

() = p+h
Ln—Zp - Gn—Zp—l ° d
_ oh (p+1)
=00 Qn72p72 od

by two additional differential operators

G = (n=2p)8" 0 (d6)? " +LOT): Q7" (M) - Q* (M),

n=2p-1

p-

) = (n-2p)(ds")} " +LOT: Q" (M) - Q"' (M),

called the gauge companion and the Q-curvature operator, respectively.
Similarly to L), these relatives are quite complicated operators in
general, but in the case when the underlying metric is flat or Einstein
we shall present closed formulas for them.

Now let (M,h) be an n-dimensional Einstein manifold with
normalization given by Ric(h) = 2.(n—1)h for a constant JeR. By ref.
[5], it follows that one can recover Branson-Gover operators as residues
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of solution operators, see Equation (34). More precisely, we have

Res , (T3 (1)~ EE+ NP ) =P M)
12

=E)"IE+NRy (30 + (5= NRY ()], (34)

The right hand side on the previous display is exactly the Branson-
Gover operator of order 2N, NeN, when acting on differential p-forms:

LY = EHM G+ NR, (7500 +(5 = NRY (). (35)

Note that there is no obstruction to the existence in even
dimensions #. Introducing the following normalization for Branson-
Gover operators,

Z(zfv) = (é -N+ 1)2N—1L(2];\)
= (%)N[(g -N+ 1)2NRN(y<+>;0) + (é - N)ZNRI(\/})(y(l))]a (36)

has the effect that the factors appearing in Theorem 4 are differential
operators with polynomial coefficients.

Remark: The normalization factor (g - N+1),,, can vanish
only in even dimensions #, due to f=n—2p. It vanishing is characterized
by: there exists an I€{1,...,N} such that g— [+1=0, or there exists an
le{1,...,N—1} such that §+1 =0.

Proposition: Let NeN and p=0,...,n when n is odd, and NeN and
p=0,...,n such that (g ~N+1),,,#0 when 7 is even. The collection
of normalized Branson-Gover operators Z(z‘i) , satisfies the recurrence
relation

LY =[5+ N(E-N+1)S"d) + (5 +N =15 - N)(ds")
HE=NIE=N+DE+N =DG+NEIILA, (37)
for L'V == 1Id .

Proof: We use the statements

2R, (50 =[5"d+ (£ + m-1)(E-m) 2R, (:0),

R (v =[d8" + (G +m)(E—m+1)2RD, (V) + (B =m+2),,,d8",

where the first is easily verified, while the second follows from
Proposition 2. In addition, we need an elementary identity

[(£+N)YE-N+1)(5"d) + (£ + N -1)(£ - N)(ds")

We start with the evaluation of the right hand side of Equation
(37). We have

[(E+N)E-N+1)("d)+(E+N-1)(E - N)ds")
+HE-N)YE-N+1D)(E+N-D)E+N)(E)]x

XCH G =N+ 2Ry (07504 (5= N+ 1), RY ()]
=GO E-N 4D, [8"d+ (G- NG+ N =DHR,, (7750)
+CH T E =N, [dS" + (G = N +DE+ NFRY, (5)
+(%)N71(§ - N)(g +N - 1)(% -N+ 2)21\,72(15’11?,\,71()/(”;0),

The preparatory identities above ensure that this equals to
GO E=N+1,, Ry (7730) + (5 = M)y RY (0]

and the proof is complete.

This recurrence relation for L) implies the result [13].

Theorem: Let (M,h) be an Einstein manifold with normalization
given by Ric(h)=22A(n—1)h for some constant JeR.

Let NeN and p=0,...,n when # is odd, and NeN and p=0,...,n such
that (£-N+1),,,#0 when n is even. The normalized Branson-Gover

operators Z(zﬁ,) factorize as
N
LY =T[4+ N-1+DE-N+D5"d+ G+ N =D& - N+1-1)d5"
=1

+E-N+I-DE-N+DE+N-I)E+N-1+1)2].
In the setting of Theorem 4 it holds

N
L = H[ﬁﬁifz s'd+ ﬁi:fz ds" + (é - k)(é +k)3]. (38)
k=1

Now we discuss the cases when (g_N+1)ZN71 =(. Let us
introduce

PV =[5+ 2 2 456" - 25"+ B (39)

2 2J 2 2J
when acting on p-forms. Due to d*=0=(5")> we have

P =20 5[4, 5'd - B+ B 45d5 (2545  + Bl =PV + P (40)
Proposition: Let n be even and 2 <7 . For [e{l,...,N1} such that
B=2l, the 2Nth-order Branson-Gover operator factorizes by
N

L) =24 ] GEso'd+A45ds" + (1 - k)i + k) 2x P,

21-1 I+k-1 I=k+1
k=1k#l,1+1

where

PP =215+ 225" [dS" - 5"d + p2]

is a fourth-order differential operator.

Proof: First note that P decomposes, due tod?=0=(6")?, as

PP = L[5 - pL)+ a5 [+ pL) = P+ Y. (4D)

For le{1,...,N—1} such that g =/ it holds

N ~
R, 750 =—32 [ [&50"d+ -k +k-Dx(H) P (42)

k=1,k=l,1+1
Similarily, using Proposition 2 we have

R)(") =R, (»":0)+0
[£d6" + (I + k) —k +1)]x (&) Py (43)

Now we rewrite the claim of Proposition 4 using equation (41) as

N ~
IR == [ [ 6"d+55d8" + (1 - k)i +k)2]x P

I+k-1

N ~
=2 [ [aso'd+ -k +k)2]x P

N ~
2 ] bR S+ (- R 2 B

I—k+1
k=1,k=#1,l1+1
N ~
=2 (+N) [ [16"d+( -k +k-1D)2]xPi”
k=1,k#1,1+1
N ~
452 (-N) [ [+d6" + @+ k)i —k+1)22]x Py,
k=1,k=1,1+1

This is equivalent by using Equations (42) and (43) to

LYy = GO+ MR, (y750) + (1 = NRY (V)]
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which is exactly the definition of L%}, see Equation (35). This completes
the proof.

From now on let n be even. We proceed with explicit formulas for
the critical Branson-Gover operator, gauge companion operator and
Q-curvature operator:

Proposition: Let (M,h) be an Einstein manifold with normalization
given by Ric(h)=2.(n—1)h for some constant JeR. The critical

Branson-Gover operator L)

.y, is given by the product formula

n2p

2
L, =m=2p)s'd [T [6"d+(E-DE+1-DED]-
=1

Proof: It follows from Equation (??) that
n-2p

LY, =(mn=2p)CH) * R, (»";0)

2

n-2p
2

=(-2p) 18"+ G- +1-1)2,

=1
Note that the last factor reduces to

S'd+ (515G + D=6,

since f=n—2p. This completes the proof.

Consequently, we found the explicit formulas for the Q-curvature
operator
n-2p |
(p+1)

Dap = (1 —2P)TH [6"d+ (& =D& +1-1)E)]
=]

and the gauge companion operator
n2p
5

GU) = (n-2p)s" o [ [6"d+(E=-DE+1-1)E)].
=1

Obviously,
(P — pH) _ oh ()
L, =G5 od=5"0 n-2p-2 © d,

which is the famous double factorization of the critical Branson-Gover
operator.

Remark: Let (M,h)=(R"(-,-)) be the euclidean space. The explicit
formulas for (), O\7;)), and G\”;)) | immediately imply after setting

n-2p—

J=0 that [14,15]

LY = (52 + N)(8"d)Y + (22— N)(do™)",

2

n-2p

o, =(n-2p)ds™) *
1 h h 2,
G\ =(n-2p)s"(ds") 2
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