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Introduction
The gut microbiotas have a critical impact on the health of 

the host. They guard against infectious agents, orchestrate body 
metabolomics, and control the absorption of drugs and the distribution 
of dietary fats [1]. However, microbiota has its own selective effect that 
extends beyond the gut. The microbiome actively participates in the 
development and performance of the central nervous system (CNS) 
[2]. A bulk of research has proven that while the gut microbiota have 
an impact on the CNS function, the brain can also alter the microbiome 
structure. Signaling molecules released into the gut lumen from lamina 
propria in response to psychological stress, under CNS control, 
can result in altered gastrointestinal motility, secretion pattern and 
intestinal permeability, changing the gastrointestinal environment and 
consequently microbiome composition [3]. Early life perturbations of 
gut microbiome can influence neurodevelopment and potentially lead 
to unfavorable morbid effects during adulthood [4]. These findings 
and many similar reports demonstrate bidirectional communication 
between the body and CNS reflecting an emerging view that there is a 
stress exchange between the brain and the body that might be mediated 
through microbiome alterations and/or overt infections with high or 
low virulent pathogens. 

Stress is a ubiquitous state that has a variable effect on all 
individuals. Stress can be mental or physical. Mental stress comprises 
challenge, threat or worry about upcoming undesirable events. Such 
stress initiates the stress response systems of the brain, which in 
turn adversely influence the major systems of the body particularly 
gastrointestinal functions [5]. 

The notion that an infectious agent may be implicated in the 
pathogenesis of mental illness is hanging around, in the field of medical 
research, for long time. An editorial in the journal of “Scientific 
American”, 1896 proposed that some mental disorders could be 
consequences of infection [6]. Yet, in recent years, an exceptional 
consideration of pathogenic organisms away from their typical role in 
infectious diseases has emerged. Long-standing clinical findings and 
recent epidemiological and scientific reports suggest that many nervous 
system diseases that thought to be strictly nervous in origin, exhibit 
heterogeneous phenotypes, which are expressed as symptoms in other 
physiological systems and/or at brain–systemic interfaces [7]. One of 
the most noticeable features of many neuropsychiatric (e.g. affective) 
disorders is their variance, with individual differences concerning 
susceptibility to disease, the combination of disrupted systems, 
and in the therapeutic and/or adverse responses to medication [8]. 
Microorganisms generate several compounds that can modulate brain 
functions [9]. Autoantibodies have been identified in Schizophrenic 
[10], bipolar and other affective disorders [11] and Alzheimer’s 
disease [12]. High levels of inflammatory markers and cytokines [13-
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Abstract
For many decades, the consequences of “stress” have been perceived as a “unidirectional” pathway where 

some stressful life conditions cause “mental stress” that activates the brain’s stress response systems, which 
sequentially affect many of the major body systems especially gastrointestinal tract. The striking upsurge in incidence 
of neuropsychiatric and neurodevelopmental disorders, in the last five decades, appeals to a crucial “bidirectional” 
interaction between the nervous system with other body systems. Such fast expansion of these disorders enforces 
also a causal role for environmental insults inflicted by the changing ecosystems as well as the modernization of 
human life style including lavish use of antibiotics, high hygiene standards and predominant utilization of urban 
western diet. It is also becoming clear that several neurological and psychiatric disorders are more and more being 
linked to a wide range of systemic dysfunctions including, most notably, immunological impairments and microbial 
manipulation. We believe that nervous system development and function are not only highly coupled with other 
physiological body systems but also with non-physiologic microenvironments created by pathogenic agents or 
dormant commensals. Direct or bystander effects of certain infectious agents or complex microbiome communities 
on brain development and function could modulate and evoke deviated behavioral responses and abnormal 
psychological outcomes. We think a better understanding of the basic components of this bidirectional interaction 
and the comprehensive characterization of the involved pathways will produce significant insights into the way 
nervous system diseases evolve and yield a novel array of therapeutic strategies. Here, we discuss different aspects 
of the dynamic crosstalk between the nervous system and microenvironments created by long-lasting pathogenic 
infections or by permanent commensal microbial communities. To pursue this goal, we review hypotheses and 
evidences that link certain pathogens or microbiome compositions to the development of neuropsychiatric diseases 
and/or neurodevelopmental disorders in genetically predisposed persons.
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Some of these limitations include, the scarce information about 
disease pathogenesis, limited and atypical animal models [24,25] as 
well as the lack of diagnostic or prognostic laboratory biomarkers [26] 
that could serve as indicators of the investigative process. Failure of 
this hypothesis to fulfill many of the “Koch’s Postulates” [27] about 
microbial agents and huuman disease was another major obstacle. The 
theory does not follow the Koch’s assumptions that specific infectious 
agents because clearly delineated disease states which cannot exist 
without the causative agent that is able to induce a similar disease in 
animal models. Most psychiatric disorders are believed to be multi-
factorial with shared pathways in the complex response to infection. 
Moreover, many of the susceptibility genes are diverse determinants of 
the outcome of infection. In addition, individual variance is a common 
finding in those diseases and animal models of such complex diseases 
are very limited.

Schizophrenia and infection hypothesis: Schizophrenia is 
the most studied disease concerning its relation to infections. An 
accumulating epidemiologic and clinical data have offered proof that 
in-utero infection is involved in schizophrenia pathophysiology [28]. 
Though no genes specifically related to susceptibility for schizophrenia 
have been discovered to date, genetic and neuropsychological studies 
suggest that to get the disease, possible suspected schizophrenia 
gene, should be expressed [29,30]. The fact that there is a number of 
schizophrenia subtypes, as well as great variability in the age of onset 
and course of the disease, suggests multifactorial etiology [31]. Theories 
include genetic, developmental, viral, immunological, biochemical, 
nutritional, and stress causes [32]. However, these proposed theories 
only explain the disease on a mutual basis. For instance, biochemical 
theories of schizophrenia usually suggest a genetic predisposition. 
Also, the most favored neurodevelopmental hypothesis, include 
genetic and epigenetic elements, as well as obstetric factors, early-life 
environmental insults and in utero stress exposure [33,34].

Many cases of schizophrenia have a positive association with past 
infection with almost eighteen microorganisms mostly viruses [6]. 
Prenatal influenza [35], perinatal Rubella [36], neonatal Enterovirus 
[37] and maternal Herpesvirus [38] have been incriminated in the 
pathogenesis of schizophrenia. Toxoplasma gondii [39], Human 
immunodeficiency virus (HIV) [40] and Herpes Simplex (HSV) [41] 
have been also reported as possible factors. Apart from the underlying 
mechanisms, that are not well understood, certain statistical and 
epidemiological conclusions can be drawn. Recent onset schizophrenia 
is associated with increased transcription of Human endogenous 
retrovirus type W (HERV-W) and increased levels of antibodies to 
Cytomegalovirus (CMV). Past infection with HSV-1 is linked to 
cognitive impairment in patients with stable schizophrenia. Maternal 
exposure to infectious agents is associated with a rise in schizophrenia 
risk rate among the offspring [39].

The Toxoplasma/schizophrenia inter-relation was intensively 
investigated and it represents the most understood model so far 
for a neuropsychiatric disorder. Therefore, a more comprehensive 
elucidation of this model will better demonstrate the mechanisms 
underlying the development of neuropsychiatric illnesses.

Toxoplasma, brain and schizophrenia: An infection connection: 
Among many pathogens linked to psychiatric disorders [42,43], most 
of the attention is centered on  Toxoplasma gondii, a neurotropic 
parasite that has a life-long latent phase after a usually short and 
asymptomatic acute stage in immunocompetent individuals [44]. The 
parasite is never cleared from the nervous system where cell-mediated 
immune response mediates its long-life existence [45]. This obligatory 

15] have been detected in those patients, proposing an autoimmune 
inflammation as an underlying mechanism of such diseases. Yet 
non-confirmed, a pathophysiology of how specific microbial agents 
orchestrate the inflammatory process started to evolve in the recent 
few years. 

Although the principal mechanisms are ambiguous, it is rational to 
suggest that postnatal development, mainly CNS functions, are affected 
by the same variables that influence the structure and function of human 
microbiome. The intrapersonal variation of microbiome composition 
is not parallel and considerably less than interpersonal variation 
reflects the individual best control measures to deal with dietary, 
pharmacologic or other disturbances on microbiome structure and 
function [8]. Several studies link diet to different forms of psychiatric 
diseases, such as schizophrenia, mono- and bipolar depression [16], 
as well as attention deficit–hyperactivity disorder (ADHD) [17], and 
autism [18]. It is also a fact that diet has a crucial share in influencing 
the microbiome structure and function. A number of psychiatric and 
neurodegenerative disorders with altered behavior, like autism and 
schizophrenia, demonstrate also digestive troubles, and diet-related 
manifestations. It has been proposed that autistic children have a 
microbiome composition different from non-autistic ones [19]. Even 
with no established relationship, yet a number of researchers think that 
microbiome investigation may lead to early diagnosis and subsequently 
early treatment of autism even before the onset of symptoms [9].

Impact on Host Behavior: An Action of a Single 
Pathogen or an Entire Microbial Community
Single-pathogen model

While it is difficult to differentiate, it is has reported that pathogens 
could induce behavioral changes in the host by direct and/or indirect 
actions. The immune–neural interactions, induced by some pathogens, 
make it hard to conclude the mechanism of host’s behavior alteration, 
whether a direct impact from the pathogen or an indirect result of 
the evoked immune responses. Moreover, some pathogens secrete 
immunoactive neuropeptides similar to those generated by immune 
reactions [20]. The secreted compounds could modulate immune [21] 
as well as nervous functions. They can be detected in the serum and 
CNS but with no clue to their source [22].

Most of the working hypotheses for neurodevelopmental and 
psychiatric disorders, especially schizophrenia, assume that most cases 
are the result of infections and/or other environmental insults that 
activates a dormant genetic background in genetically predisposed 
individuals. These distinct gene-environmental interactions took place 
a long or short time before the onset of the clinical disease. The “single 
pathogen” suggestion means that infection with a certain infectious 
agent is considered an environmental insult that activates a genetic 
background and lead to a cascade of complex interactions that ultimately 
ends up with the development of a psychiatric disorder. However, 
this does not mean that a specific single pathogen is responsible of all 
psychiatric disorders. It seems that a range of infectious agents utilize 
common mechanisms to induce some neuropsychiatric disorders 
[23]. Therefore, any pathogen (viruses, bacteria or parasites) that can 
activate a predisposed genetic elements and can drive the same cascade 
of interacting pathways, is a candidate pathogen that might precipitate 
a psychiatric disorder. 

However, the infection hypothesis of psychiatric disorders was 
not an easy testable theory. A series of theoretical challenges and 
practical problems, have hampered the investigation of such theory. 
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intracellular parasite affects one-third of the world’s population [46], 
and produces a wide range of clinical syndromes with an exceptional 
severity in immunocompromised patients  [47]. Early trans-placental 
infection might result in a fetal multi-system affection that includes 
serious CNS abnormalities [39]. 

For many decades, latent Toxoplasma infection has been regarded 
as completely asymptomatic in immunocompetent individuals. In view 
of recent findings suggesting a parasite’s survival power making it in 
adequate control of host’s machinery, questions have been raised on 
the “apparently” peaceful parasitic existence in the host. The theory 
that Toxoplasma infection could drive the development of some 
neuropsychiatric illnesses, especially schizophrenia, was created many 
years ago. Different studies have demonstrated that Toxoplasma alters 
the behavior of its rodent intermediate hosts (mice and rats) boosting 
their chance of being predated by cats [48,49]. It has been also reported 
that latent toxoplasmosis patients are 2.65 times more susceptible to be 
engaged in car accidents than non-infected individuals [50]. Suicide 
attempters had also been shown to have significantly higher values of 
anti-Toxoplasma IgG antibodis [51]. 

Toxoplasma gondii tends to reside in brain neurons, especially glial 
cells, which are profoundly involved in forming the scaffold for brain 
structure, guiding the growth of other brain cells. The cell culturing 
studies confirmed the affinity of T. gondii to glial cells, especially 
astrocytes, [52,53]. Toxoplasma infection can also lead to an infiltration 
of CNS with a significant trail of immune cells (CD4+ and CD8+ cells) 
[54]. These cells bind to adhesion molecules and encounter parasitic 
antigens presented by glial cells. This process activates secretion of 
INF-γ which in turn induces microglia to demonstrate phagocytic 
activity and produce INF-γ and TNF-α. Both cytokines are believed 
to express enough action to limit parasite replication and stimulate 
cytotoxic T-cells to destroy parasitized cells [55]. Microglia changes has 
been reported to be a mainstay for the development of many behavioral 
and psychiatric disorders [56]. On the other hand, glia is believed to 
be centrally involved in schizophrenia. Studies on postmortem brain 
specimens of schizophrenic patients have also revealed several glial 
deformities [57], including low numbers of astrocytes [58]. 

The Toxoplasma ability to infect the brain and reside there forever 
producing a low grade encephalitis and inducing some structural 
changes and cognitive impairment [59] is consistent with many 
aspects of schizophrenia pathogenesis [60]. While there is no specific 
assumption can be drawn, it is notable that several studies [61-63] 
propose a potential link between schizophrenia and Toxoplasma 
infection. This proposal has been boosted by studies demonstrating 
an in vitro anti-Toxoplasma activity for some medications used in 
schizophrenia [64,65]. Anti-Toxoplasma chemotherapeutics as well as 
dopamine antagonists were reported to regain the normal behavior of 
experimental murine models, signifying a neuro-chemical mechanism 
underlying T. gondii alteration of host behavior [66]. 

Schizophrenia-Toxoplasma coevolution: Potential costs 
of tolerance: Human history cannot be understood well without 
understanding the causes and consequences of human disease [67]. 
This suggestion has become fully evident over the past few years as the 
outcomes of infectious diseases have been revised in an untraditional 
context. For most of the 20th century, the prevailing view was that 
disease-causing infectious agents ultimately should progress toward 
benign coexistence with their hosts. According to this view, severe 
acute diseases were seen as a transient condition of maladaptation 
[68]. This belief assumed also that the host has retained a permanent 
state of “tolerance” and is able to indefinitely limit the damage caused 

by a given pathogen burden. Long-term adaptation and peaceful 
host-pathogen coexistence postulation has made any future drastic 
consequence of infection practically impossible. According to the 
same view, latent Toxoplasma gondii infection, with its life-long brain 
existence, has been considered as a benign co-existance of the parasite 
and described as a “symptomless” state of the disease. However, it is 
widely accepted in health sciences that pathogen burden and host’s 
well-being are not always well correlated [69], but that rather logic 
decoupling for the sake of better understanding of host-pathogen 
coevolution have been mostly overlooked. Coevolution is exceptionally 
critical in host–microbe paradigm due to the intimate association and 
the robust selective pressures exerted by each one on the other [70]. 
The reciprocal traits possibly engaged in host-pathogen coevolution 
include pathogen infective ability and host resistance; pathogen’s 
ability of host selection and host’s pathogen-avoidance behaviors; 
as well as the host ability to eradicate the pathogen versus the ability 
of the pathogen to evade host defenses and establish infection [71]. 
Consequences of coevolution are hard to demonstrate because the 
genetics of host–pathogen communication does not usually follow the 
straightforward gene-for-gene pattern. For example, human resistance 
and/or tolerance to parasites is frequently polygenic with a range of 
genetic mechanisms ensuring effective host resistance [72]. A further 
complication is phenotypic plasticity [73] which is best demonstrated 
by the adaptive immune response, which lets a single specific genetic 
machinery to defend against a enormous number of different 
pathogenic species and/or strains [71].

One postulated mechanism for how Toxoplasma infection 
could affect personality in humans is the local brain immune 
microenvironment that is involved in maintaining T. gondii quiescent. 
In its pursue to “tolerate” Toxoplasma infection, the human body 
unleashes immune responses that alter cytokine levels, which 
consequently influence the level of neuromodulators [74] such as 
increasing dopamine [75]. Toxoplasma gondii provides a good model 
of the manipulatory power of the parasite exerted on its host. To 
accomplish its own selective advantage, the parasite can modulate 
host behavior. Sexual reproduction of T. gondii takes place only in the 
definitive host (felines), therefore, strong selective pressures enforce 
the parasite to evolve mechanisms to accelerate its transmission from 
the intermediate host (mice, rats etc.) to the definitive cat host to 
complete its life cycle. Thus Toxoplasma deliberately induces behavior 
changes in its intermediate host so as to promote its urge to move to 
the definitive host. Some studies have demonstrated that T. gondii 
causes an increased activity and a suppressed innate fear and predator 
vigilance behavioral traits of mice [76], each might help Toxoplasma 
exit from the intermediate murine host. Moreover, T. gondii appears to 
alter the rats’ cognitive perception of cat predation risk, turning their 
innate aversion into a ‘suicidal’ fatal feline attraction [77-79]. 

Toxoplasma and schizophrenia pathophysiology: Hypotheses, 
mechanisms and pathways: Schizophrenia is a multifactorial disorder, 
where multiple etiologic factors interact to precipitate the disease 
through a heterogeneous array of pathways. Any correlation between 
Toxoplasma infection and the pathophysiology of schizophrenia is 
expected to happen only in a small percentage of infected individuals, 
and is valid to only a number of schizophrenic cases, however, there is 
more than a subtle evidence that link them together [80,81]. 

Many hypotheses have been proposed to establish a reasonable 
explanation to a possible role of toxoplasmosis, especially its latent 
phase, in the development of schizophrenia. An account on the 
meurodevelopmental theory was presented in the previous section 
(Schizophrenia-Toxoplasma coevolution). 
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A cytokine hypothesis was also suggested [82,83]. It states that early 
maternal immune activation most probably due to infections, results in 
premature in utero exposure to high levels of cytokines which gradually 
leads to the development of schizophrenia usually during adolescence 
[84]. In addition to their immune function, cytokines are crucially 
involved in the process of neurodevelopment. Cytokine ligands are 
expressed on several cells of the fetal brain. They are involved in many 
processes that pursue a tightly regulated pattern of neurodevelopment 
that is crucial for efficient adulthood pattern of neural functioning [82]. 
Many epidemiological and laboratory findings support this hypothesis. 
Abnormal patterns of expression of some cytokines have been 
demonstrated in both the brain and peripheral blood of schizophrenic 
patients [83]. Epidemiologic reports relating schizophrenia to early-life 
infections started to emerge more than 50 years ago. Some children 
born to mothers infected with influenza, during the pandemic of 1957, 
developed schizophrenia later in life [85]. Toxoplasma gondii infection 
fits better in the cytokine hypothesis of schizophrenia. Due to an early-
life activation of the immune system by in-utero Toxoplasma infection 
and/or persistence of latent infection, which is not radically cleared by 
the immune system. As a result, an imbalance between the T-helper 
type-1 (Th-1) and Th-2 immune responses prevails. Interferon (IFN)-γ 
is the main cytokine involved with acute as well as with chronic 
resistance to T. gondii infection [86]. Some reports have suggested a 
relationship between schizophrenia and IFN-γ, a major immune-
activator in the CNS [87]. During prenatal exposure to Toxoplasma 
infection, a considerable rise of placental TNF-α levels takes place [88]. 
Elevated levels of TNF-α are evident in the serum of schizophrenia 
patients [89]. This disturbed immune pattern could be associated with 
indoleamine 2,3 dioxygenase (IDO) inhibition that ultimately leads to 
tryptophan depletion and accumulation of kynurenic acid in specific 
parts of CNS. It is believed that this specific pattern of disturbed 
metabolomics might lead to the emergence of schizophrenia [90].

Here, we tackle one of the most accepted theories, that explains 
Schizophrenia-Toxoplasma interaction and intersect with other 
hypotheses, which is the “neurotransmitters theory”.

Neurotransmitters theory: Different types of neurotransmitter 
irregularities have been implicated in the pathogenesis of schizophrenia. 
Most of the studies investigating a possible neurotransmitter basis of 
schizophrenia have been concentrated on monoamine compounds 
especially dopamine and serotonin, amino acid transmitters mostly 
glutamate and neuropeptides [91-93]. Excessive dopamine or deficient 
glutamate function appear to be the most reasonable pathways. 
However, disturbances of other neurotransmitters such as noradrenalin 
and γ-aminobutyric acid (GABA), may also have a role [94]. The 
serotoninergic (5-HT) system has also been frequently implicated in 
schizophrenia [95].

Dopamine is considered the main neurotransmitter engaged in 
the pathophysiology of schizophrenia [96]. However, some studies 
viewed glutamate as a better candidate to explain the heterogeneous 
symptoms of schizophrenia [97]. Glutamatergic neurotransmission 
has been linked to a number of physiological and with specific 
pathophysiological processes, including schizophrenia [98]. Glutamate 
has been reported to present in nearly all areas of the brain, in contrast 
to dopamine which is confined to only certain parts [97]. A diminished 
release of glutamate has been detected in the frontal and temporal 
cortices of schizophrenic patients [99].

The “dopamine hypothesis” proposes that schizophrenia-
associated symptoms are linked to excess dopamine release in specific 
brain regions [97]. Dopamine release can disrupt the fornix section 

of brain leading to the development of psychosis [61]. Dopamine 
overproduction and activity is proposed to be engaged in schizophrenia 
pathogenesis since drugs that decrease brain’s dopamine levels are 
likely to mitigate the positive symptoms of schizophrenia. On the other 
hand, amphetamines that increase dopamine levels, has been reported 
to accentuate schizophrenia symptoms [100]. Dopamine hyperactivity 
seems to be linked to the positive symptoms of schizophrenia [101]. 
Parasitosis might contribute to the increase of the dopamine level 
in mice brain [102,103]. Similarly, studies on experimental animal 
models of toxoplasmosis have showed that the parasite modulates 
dopamine, norepinephrine, and other neurotransmitters, in a pattern 
similar to that encountered in schizophrenia patients [39]. The host’s 
defense mechanisms against Toxoplasma infection might ultimately 
lead to a decrease in serotonin and an accumulation of dopamine. 
While the host is trying to control latent toxoplasmosis through a 
T-lymphocyte-driven mechanisms [104], these activated T-helper cells 
secrete IFN-γ which in turn induces IDO enzyme [105]. Through the 
kynurenine-pathway, IDO leads to tryptophan depletion resulting 
in the accumulation of tryptophan-degradation products [106] that 
may result in excess dopaminergic tone. Moreover, a single study 
has been demonstrated that T. gondii by its own is able to synthesize 
dopamine [107]. Some studies showed that dopamine is one of the 
key compounds related to psychosis (e.g. schizophrenia, and bipolar 
disorder) in latent toxoplasmosis patients [108,109]. Another report 
proposes that endocannabinoids-induced by T. gondii infection may 
also be associated with abnormal behavior [110].

Therefore, the interaction between latent Toxoplasma infection, and 
the host immune system that lead to neurotransmitters irregularities, 
could represent a reasonable model for the evolution of, not only 
schizophrenia, but other related personality disorders [111].

Entire microbial community (microbiome)-model

Bidirectional modulation: There is now an accumulating 
literature that defend the idea that gut microbiome plays a role in early 
programming as well as later responses of the stress system. Recent 
breakthroughs have been made in the neurobiological knowledge of 
the host response to acute and chronic stress. This has evolved a better 
insight of the complex brain-gut interactions and their modulation in 
health and disease [112]. The old, one-way stress model indicates that 
certain stressful life events have been triggered the onset or exacerbate 
of several common chronic functional and organic disorders especially 
of the digestive system. These gastrointestinal diseases include 
inflammatory bowel disease, reflux oesophagitis, and peptic ulcer [5]. 

Gut microbiome and the brain: bidirectional communication 
with an “immune bridge”: The assumption that the gut microbiota 
may contribute to the risk and pathogenesis of many psychiatric 
and neurodevelopmental disorders, is a testable hypothesis. Genetic 
and environmental factors individually or combined are not 
enough to explain the rising incidence of several psychiatric and 
neurodegenerative illnesses. A missing link might activate a dormant 
genetic predisposition and arrange the non-specific environmental 
factors into a targeted and compact sequence of events. This activated 
cascade could ultimately lead to behavioral changes that characterized 
those diseases. Consequently, a new paradigm has emerged that takes 
into account the individual genetic traits, the impact of environmental 
factors, the individual infectious experience and/or microbiome 
structure together with an immunologic basis that mediate the 
interaction of all these variables to develop neuropsychiatric disorders. 
It is now comprehensible that the balance between the host and his 
microbiome composition, in both healthy and morbid states, depends 
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profoundly on a very well-tuned balance of immune tolerance and 
response. The massive interaction between the immune system and the 
diverse microbial communities is evident in three major observations. 
Firstly, the presence of noticeable innate and adaptive immune 
responses to the microbiome constituents in health and disease. 
Secondly, alterations, in microbiome structure and/or function, took 
place in patients with genetic immune deficiencies suggesting an 
immune control on microbiome. Thirdly, deviant immune system 
responses to non-relevant antigens, including self-antigens, imply a 
microbiome-derived immune modulation [113].

Co-evolvement of microbiome assembly and nervous system 
functions: Shaping of the microbiota take places a parallel course to 
neurodevelopment and they both have similar crucial developmental 
opportunities sensitive to adverse actions. The 10-100 trillion symbiotic 
microbial cells harbored by each person (i.e., the microbiome) [114] 
are involved in the evolution and function of the immune system. This 
system consequently works to balance clearance of pathogenic microbes 
with tolerance of beneficial commensal ones. Recent studies [115,116] 
back the suggestion that the changes in host microbiome modulate its 
immune response evoking a “remote control” effect on distant organs 
that may lead to diseases. The microbial population residing in the 
small and large intestine represents the largest microbial population 
of the human microbiota. Therefore, dysbiosis of the gut microbiota 
could not only be related to several intestinal but also extraintestinal 
diseases. Brain is one of these distant organs that seems to be the 
most affected by gut microbiome dysbiosis [117]. Dysbiosis of gut 
microbial structure and function has been linked to many behavioural 
and neurophysical morbid changes. Most, chief neurological and 
psychiatric disorders display immunological abnormalities such as 
high levels of inflammation and deviant innate and adaptive immune 
responses [7].

The assembly of the microbial community during infancy remains 
poorly understood despite being essential to human health [118,119]. 
This construction of the microbiota can lead to either negative 
or positive effects on health. Metagenomic investigations of the 
microbiome of human gut suggested a crucial part of early postnatal 
environmental exposures in shaping the phylogenetic organization of 
the future gut microbiome in adulthood. However, the human intestinal 
microbiota changes from being sparsely populated and variable to an 
organized assembly towards an adult microbiome structure takes place 
during the first three years of life [120]. The facultative anaerobes such 
as Streptococcus, Enterobacteriaceae and Staphylococcus are the first 
gut colonizers consuming oxygen, and therefore creating an anaerobic 
environment leading to predominance of strict anaerobes such as 
Clostridium, Bacteroides and Bifidobacteria [121]. Characteristics of 
the gut microbata consotorium and its gene content are allocated to 
family members and passed on to next generations [122]. Nutrition 
in this early post-natal phase of life is considered one of the crucial 
environmental exposure events that determine microbiome structure. 
A recent study revealed a feeding mode-dependent difference in terms 
of diversity of the microbiota, the interactions among them as well 
as their interplay with host genes. During the first two years of post-
natal period, breastfeeding is crucial for establishing gut microbiome 
composition [121] and the development of a healthy host-microbiome 
consortium in human infants that could continue for the entire healthy 
adulthood [123]. Apart from antibodies that partly protect newborns 
from infection, breast milk contains immunoactive substances, such as 
cytokines (especially IL-10), growth factors and antimicrobial enzymes 
such as lysozyme. This sequence of events could suggest temporal axis 
of co-evolution of the immunological and nutrient characters of breast 

milk and the early life formation and maturation of the gut microbiome 
and of the innate and adaptive immune responses [124]. A large-scale 
cohort study supports this suggestion and indicates that breastfeeding 
may have a positive effect on children’s and adolescent’s mental health 
[125].

Microbiome-driven immune responses regulate nervous 
functions: Gathering evidence proposes that the immune 
responsiveness of any host is mostly molded by his own microbiome, 
with inferences for immunity to infection, magnitude of immune 
pathology and autoimmunity. The microbiome has been linked to 
the initiation of a deviant immune response and also been shown to 
modulate brain development and behavior in animal model systems. 
The gut microbiome has a critical role in the development of the 
immune system. The body microbiota, like invading pathogens, exhibit 
the ability to activate both innate and adaptive immune responses. The 
stimulated innate immunity, early in life, leads to the maturation of 
the gut-associated lymphoid tissue (GALT), and acquired immunity, 
through activation of both local and systemic responses. Innate 
immune responses to the microbiome constituents, together with 
physical barriers, may avert Th-cell-driven actions towards microbiota 
antigens [126]. As the innate responses are short of specificity and lack 
memory, it is frequently hard to recognize whether innate responses 
to microbiota-pathogen shared molecular patterns have been activated 
by the microbiota or pathogens. Moreover, gut microbiota exercises 
its protective power, against pathogens, through accelerating the 
metabolism of nutrients required for pathogen’s survival, as well as the 
production of growth-inhibitory molecules [127]. However, the exact 
role of Th cells in microbiota control is not yet fully understood [126]. 

After stabilization of the gut microbiota community, the constant 
stimulation of the immune system by several structural components of 
the microbial cells leads to production of a wide range of lymphocytes 
and cytokines. In a state of homeostasis, the gut microbiota induces a 
chronic state of low-level activation of the (innate) immune system in 
the host, in which bacterial particles stimulate intestinal macrophages 
and T cells to produce pro-inflammatory cytokines; interleukin (IL)-
1β, tumor necrosis factor-α, IL-18 [128]. This status of “low-grade 
physiological inflammation”, is a prompt and efficient machinery 
combating pathogens [129]. The produced cytokines create a basal state 
of immune activation that starts at the intestinal mucosal surface and 
eventually affects the entire body especially the nervous system. The low 
level exposure of immune cells to the bacterial cell wall components 
such as lipopolysaccharides (LPS), is essential in the establishment and 
maintenance of mucosal homeostasis [130]. 

However, the power of gut microbiota exerted through stimulation 
or suppression of the immune system, might extend beyond the control 
of the pathogens themselves. Microbiota modulation of the functions 
of myeloid cell, will unavoidably extend to T cell responses. All these 
cascades and others are involved in the creation of immunologic and 
biochemical microenvironment that gradually modulate nervous 
functions. The brain is the commonly targeted and the most vulnerable 
organ to the microbiome-drive state of continuous immune stimulation 
and a constant low-grade inflammation that might ultimately lead to 
mood and behavioral changes.

Microbiom imbalance in neuropsychiatric disorders and 
Autism: Recent evidences have been accumulated proposing that 
symbiotic gut microbiota manipulate brain functions in a way that a 
balanced microbiome can promote mental health [131]. The balanced 
microbiome fight against many psychological disorders [132,133]. 
Novel terms such as ‘psychobiotics’ and ‘psychomicrobiotics’ are now 
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being used to highlight the likelihood that gut microbiome imbalance 
may have adverse impact on mental processes [134]. Microbial 
imbalance (dysbiosis or dysbacteriosis), can give rise to major 
psychiatric disorders [135].

Microbiota alterations have been demonstrated to modulate 
anxiety-like and depression-like behaviors. Similar alterations have 
been associated to autism [136]. In recent years, the significance of gut 
microbiome dysbiosis in the pathophysiology of illnesses such as autism, 
dementia and mood disorders, has been raised. The inflammatory 
state alteration, induced by a parallel alteration in microbiome 
structure, is pathognomonic in disorders like schizophrenia, major 
depressive disorder and bipolar disorder, implicating microbiota in the 
development of neuropsychiatric illnesses [130].

Recently, it was found that not only gut microbiome dysbiosis that 
could precipitate neuropsychiatric disorders but also oropharyngeal 
microbiome. In a recent comprehensive study, researchers have 
identified a potential link between microbiota inhabiting the throat 
and schizophrenia. The oropharynx of schizophrenics seems to conceal 
a composition of oral microbiota different than healthy individuals. 
Ascomycota and lactic acid bacteria were relatively more abundant 
in schizophrenics than controls. Healthy individuals were richer in 
species but less even in their diversity [137].

The fact that the microbiome structure within members of a family 
has closer similarity than with non-family members [138], is consistent 
with the familial nature of schizophrenia distribution. Similarly, 
microbiata composition is more uniform in monozygotic twins than it 
does in dizygotic ones [139-140]. This finding is once again consistent 
with the schizophrenia twin studies [141]. Evidences that implicate 
microbiome dysbiosis in schizophrenia includes structural damage 
to the gastrointestinal tract, a robust immune response to infectious 
agents and food antigens, and microbiome changes known in other 
neuropsychiatric illnesses. Several mechanisms have been proposed 
to mediate the effect of microbiome imbalance on the development 
of neuropsychiatric disorders. Modification of intestinal permeability 
that permits access of endotoxins in the systemic blood could result in 
alteration of neuronal activity in the limbic system such as increased 
amygdala activity as well as microglia activation, contributing to 
chronic inflammation of CNS. Given the assumed anti-inflammatory 
actions of butyrate, it is likely that dysbiosis may result in depletion of 
butyrate-producing bacteria thus promoting inflammation. A deviant 
immune response induced by microbiome dysbiosis could favor the 
release of relatively excess proinflammatory cytokines. Schizophrenia, 
major depressive and bipolar disorders are characterized by abnormal 
profiles of circulating pro- and anti-inflammatory cytokines [136]. 
Certain abnormalities in neuropeptides and neurotransmitters have 
been long linked to schizophrenia development. Several reports have 
shown noticeable alterations in neuropeptides and neurotransmitters 
in response to changes in the gut microbiome structure. Lactobacillus 
acidophilus promotes the expression of cannabinoid and opioid 
receptors in experimental murine models as well as in human epithelial-
cell cultures, in that way reducing experimentally evoked pain [142]. 
Antibiotic-induced microbiome imbalance is correlated with higher 
concentrations of substance P in the colon [143]. In response to the gut 
microbiota, the host may also produce an excess of neurochemicals, 
which help mitigating inflammation, diminishing the stress response, 
and ultimately improving mood [141,144].

The epidemiological data showed that mothers who experienced 
high, prolonged fever during pregnancy are up to seven times more 
probable to give a child that will develop autism. Similarly an increased 

risk of autism was demonstrated in offspring born to pregnant female 
monkeys infected with pathogens has recently been confirmed [145]. 
These data suggested a hypothesis of an early immune activation for 
autism. However, recent data showed that offspring of mice exposed to 
premature immune activation and developed behavioral abnormalities, 
have an altered gut microbiome structure, gastrointestinal 
abnormalities, and defects in intestinal permeability ‘leaky gut’ similar 
to those demonstrated in human cases of autism [146,147]. Thus, 
microbiome alteration might be one of the mechanisms by which early 
immune activation mediates development of autism. The microbiome 
dysbiosis results in a subsequent modification of intestinal permeability 
that leads to lipopolysaccharide (LPS), pro-inflammatory endotoxin, 
overproduction and release into the blood modulating specific CNS 
regions especially those related to the emotions control such as 
amygdale [148]. It also lead to predominance of pro-inflammatory 
cytokines that modify the physiological brain activity and modulating 
the synthesis of neuropeptides [149]. A study [150] has demonstrated 
significantly higher serum levels of LPS in autistic patients compared 
to healthy individuals. The possible role of gut microbiota in the 
pathophysiology of such illnesses has been broadly investigated in 
animal models. Differences in the gut microbiota between offspring 
of maternal immune activation mice and controls were detected. 
The discrepancy was mainly due to the great diversity of Clostridia 
and Bacteroidia [146]. It has been also demonstrated that a large 
number of Clostridium sp. dominates the microbiome composition of 
fecal specimens from autistic patients [19,151,152]. An imbalance of 
Bacteroidetes and Firmicutes phyla,were also detected characterized 
by a high profile of Bacteroidetes and other gut symbiotics [153]. 
Another study hypothesized that the alteration of endogenous gut 
microbiota, in autistic patients, allows other bacteria that are able to 
generate neurotoxins to colonize the gut and partly contribute to the 
development of autistic symptoms.

Conclusion
It is plausible that microbial agents with their multifaceted capacity 

to interact with CNS, are able to precipitate mood and behavior 
changes. Establishing an infectious basis for neuropsychiatric and 
neurodevelopmental disorders, is a testable hypothesis that could 
elucidate the obscure pathophysiology of these illnesses. Better 
understanding of CNS interactions either with committed pathogens or 
inhabiting microbiota could shift the clinical classification of refractory 
disorders such as schizophrenia and autism, to the category of treatable 
and preventable diseases. Deeper dissection of the immunologic and 
metabolic pathways involved in brain-microbe interaction might yield 
a novel array of diagnostic and prognostic laboratory biomarkers of 
neuropsychiatric/neurodevelopmental disorders. Genuine scientific 
thinking as well as research approaches that are able to cross classical 
interdisciplinary boundaries could result in a breakthrough in this field 
of psychiatric research that, while in its infancy, seems very promising. 
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