The Clinical, Quality of Life and Economic Outcomes of Inpatient Rehabilitation: A Systematic Review

Stefania Maistreli1, George Gourzoulidis2*, Katerina Vellopoulou1, Georgia Kourlaba1,2 and Nikos Maniadakis2
1Collaborative Center of Clinical Epidemiology and Outcomes Research (CLEG), Non-Profit Civil Partnership, Athens, Greece
2EVROSTON LP, Athens, Greece
3Department of Health Services Organization and Management, National School of Public Health, Athens, Greece

Abstract

Objective: To systematically review the clinical, functional and economic benefits of Inpatient Rehabilitation for the most common disorders of the nervous system: stroke, spinal cord injury, and multiple sclerosis.

Methodology: PubMed, Embase, Scopus, CEA Registry, and NHS EED databases were searched using combinations of three sets of keywords using various terms for rehabilitation, benefits, and treatments. The outcomes considered included measures of independence in activities of daily living (ADL), motor function, disability, handicap, gait velocity, quality of life, and economics. Following the initial literature search, the abstracts and full texts of the identified studies were reviewed and assessed for inclusion by two independent researchers based on pre-determined criteria. The data of selected studies were extracted into a data extraction form and consequently were synthesized.

Results: Forty-six articles met the inclusion criteria. Particularly, 21 studies evaluated inpatient rehabilitation after (or following) stroke, 15 studies evaluated inpatient rehabilitation after SCI, and seven studies evaluated inpatient rehabilitation for MS patients. The remaining three studies referred to mixed patient population. The majority of studies indicated that inpatient rehabilitation can provide clinical and functional benefits for all patient groups under consideration. Moreover, economic evaluations indicate that rehabilitation may be cost saving or cost-effective in certain patient groups such as those with fractures and stroke.

Conclusion: The results of the present review demonstrate that inpatient rehabilitation may deliver significant health and economic benefits for patients suffering from stroke, spinal cord injury, or multiple sclerosis and for health systems. Further research is needed to improve the consistency and robustness of the available evidence.

Introduction

Over a billion people, about 15% of the world's population, have some form of disability either due to injury or acute and chronic diseases [1]. Between 110 million and 190 million adults have significant difficulties in functioning. Rates of disability are increasing due to population ageing and raises in the prevalence of chronic health conditions, among other causes. Disability has a negative impact on social development and economic development [1].

Rehabilitation is instrumental in enabling people with limitations in functioning, to remain in or return to their home or community, live independently, and participate in education, the labour market and civil life. Access to rehabilitation can decrease the consequences of disease or injury, improve health and quality of life and decrease the use of health services [2].

Physical rehabilitation is a medical specialty focused on prevention, diagnosis, and therapy for patients who experience functional limitations resulting from injury, disease, or malformation. The benefits of rehabilitation could be clinical- physical, neurological, and cognitive related improvements-, functional-motor related improvements and economic- including patient's work productivity [3,4]. Rehabilitation programs can be provided in alternative settings including an acute hospital, sub-acute hospital, specialist facilities (inpatient or outpatient), or the patient's home.

While many countries have started taking action to improve the lives of people with disabilities, much remains to be done [2]. Increased collaboration amongst rehabilitation professionals in developed and developing countries is essential to implement appropriate and sustainable rehabilitative services.

In Greece, rehabilitation services are provided mainly by private specialized institutions, even though, there are also some integrated services in general hospital care public facilities. However, the provided services are fragmented, underdeveloped, underfunded and in many cases inadequate and much more attention needs to be paid to this particular medical specialty.

In this light, the objective of the present study was to systematically review the literature reporting evaluations on the clinical, quality of life, and economic benefits of inpatient rehabilitation for patients suffering from stroke, spinal cord injury (SCI), and multiple sclerosis (MS).

Methods

This review was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria [5,6] to search, retrieve, and synthesized the findings of selected studies.

Search strategy

In order to identify eligible studies, PubMed, Embase, Scopus, CEA Registry, and NHS EED databases were searched using pre-determined keywords. The latter were synthesized by a group of experts with relevant expertise.

Keywords: Inpatient rehabilitation; Clinical; Functional ability; Economic; Benefits

*Corresponding author: Gourzoulidis George, EVROSTON LP, Chatziyiannii Mexi 5, 115 28, Athens, Greece, Tel: +30-216-900-1701; Fax: +30-216-900-1702; E-mail: gourzoulidis.g@evroston.com

Received March 15, 2017; Accepted April 03, 2017; Published April 04, 2017

Copyright: © 2017 Maistreli S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
methodological and clinical expertise. The literature search was conducted using three different combinations of keywords for: rehabilitation; outcomes and health condition, as presented in Table 1. The terms in the three major categories were combined by the Boolean "AND", whilst the terms utilized within each of the search categories were combined by the Boolean "OR". The filters "English" and "Humans" were added as to restrict our search to the relevant studies. There was no search limitation in terms of time and geographical location of the original studies. The search was limited to studies published up to December 2015. The Appendix presents the full search strategy used for MEDLINE, which was adapted appropriately for the rest of the databases.

Study selection

Consequently, the identified studies were reviewed and assessed for inclusion in the review by two independent researchers, based on the predetermined inclusion/exclusion criteria presented in Table 2. Clinical trials were excluded since the review was focused on real-world evidence data. Therefore, as presented in Table 2, observational studies were taken into consideration. The study selection procedure encompassed two stages: initially, all the identified studies were evaluated on the basis of titles and/or abstracts against the eligibility criteria; in the second stage, when the information provided by titles/abstracts was insufficient to decide on inclusion/exclusion, or when the titles/abstracts indicated that the specific studies met the inclusion criteria, the full-papers were retrieved to be screened. In cases where the amount of information reported in the full-text continued to be insufficient to make a decision about inclusion, the studies were excluded. The study selection process was documented through a flow chart showing the number of studies/papers remaining at each stage.

Data extraction

A standardized data extraction form for each health condition (stroke, SCI, MS), developed for the purpose of this review, was used by the two reviewers to extract the data independently. Any disagreement in the data extraction form between the two reviewers was resolved through discussion between these two or by involving a third independent researcher. The aforementioned extraction form was designed to include data on the background information of the study, its methodological characteristic, and the key results.

Data synthesis

In this systematic review, the results are summarized in a qualitative manner collating data from studies. We synthesized the relevant and available data in a systematic manner following the review question, the inclusion and exclusion criteria.

Results

Study selection

After removing duplicate citations, 1,764 unique citations remained for screening. The manual screening of all titles and abstracts yielded 84 articles that contained information about the benefits of inpatient rehabilitation. Of the latter full articles retrieved and reviewed by the investigators, 40 met the inclusion criteria. The reference lists of all relevant papers originally selected for inclusion in the review and relevant reviews were also searched manually to identify potentially relevant articles which were not identified by the original electronic search. Consequently, six additional studies of interest were collected in full text with agreement for inclusion in the systematic review, taking the total to 46. Details of literature search strategy are shown in Figure 1.

Overall 41 out of the 46 studies examined the clinical benefits of inpatient rehabilitation (16 for stroke patients, 15 for SCI patients, seven for MS patients, and three for mixed population of stroke and SCI patients) and five studies assessed the economic benefits for post-stroke patients. Notably, there was significant heterogeneity in terms of study designs and in the way that functionality was measured.

Stroke

Overall, 24 studies examined the impact of inpatient rehabilitation on stroke patients (Table 3).

Clinical outcomes

Four studies [7–10] assessed functional disability in stroke patients using the Barthel Index (BI), which is a standardized and well validated method of measuring a patient’s level of physical independence. In

<table>
<thead>
<tr>
<th>1.Type of rehabilitation</th>
<th>2.Outcomes</th>
<th>3.Condition/Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rehabilitation centre</td>
<td>Benefit</td>
<td>Stroke</td>
</tr>
<tr>
<td>Rehabilitation centre</td>
<td>Outcome</td>
<td>SCI</td>
</tr>
<tr>
<td>Rehabilitation hospital</td>
<td>Cost</td>
<td>Spinal cord injury</td>
</tr>
<tr>
<td>Inpatient rehabilitation</td>
<td>Clinical</td>
<td>Multiple Sclerosis</td>
</tr>
<tr>
<td>Hospital-based rehabilitation</td>
<td>Health</td>
<td></td>
</tr>
<tr>
<td>Hospital based rehabilitation</td>
<td>Economic</td>
<td>Functional</td>
</tr>
<tr>
<td>Quality of life</td>
<td>Quality-of-life</td>
<td></td>
</tr>
<tr>
<td>Productivity</td>
<td>Capability</td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td>Work</td>
<td></td>
</tr>
<tr>
<td>Hospitalization</td>
<td>Barthel</td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td>Cost-benefit</td>
<td></td>
</tr>
<tr>
<td>Cost-effectiveness</td>
<td>Cost-utility</td>
<td></td>
</tr>
<tr>
<td>Cost-minimization</td>
<td>Early discharge</td>
<td></td>
</tr>
<tr>
<td>Cost-consequence</td>
<td>Economic modeling</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Search terms used in searches of electronic databases.

<table>
<thead>
<tr>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies</td>
<td>Systematic reviews, meta-analysis, case studies/reports,</td>
</tr>
<tr>
<td>Observational studies, economic evaluations</td>
<td>letters to the editor, abstracts</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Other outcomes</td>
</tr>
<tr>
<td>Clinical, functional, quality of life, economic</td>
<td></td>
</tr>
<tr>
<td>Conditions</td>
<td>Stroke, Spinal Cord Injury, Multiple Sclerosis</td>
</tr>
<tr>
<td>Population</td>
<td>Adults</td>
</tr>
<tr>
<td>Countries</td>
<td>Any</td>
</tr>
<tr>
<td>Setting</td>
<td>Inpatient (hospitals or centers)</td>
</tr>
<tr>
<td>Outpatients</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Inclusion and exclusion criteria considered in the search strategy.
all of these studies, patients demonstrated a statistically significant improvement in the BI score at discharge score relative to the one at admission.

Twelve studies used the Functional Independent Measure (FIM) for the evaluation of motor and cognitive disability in stroke patients [10-21]. All of these studies indicated significant improvement in the FIM score between rehabilitation admission to rehabilitation discharge. Notably, the majority of the studies highlighted that the improvement of patients' functional ability was statistically significant [10-13,16-18,20,21].

Two studies used the Motor Assessment Scale, Item 6 Upper Arm Function (MAS6) to measure the upper arm disability [17,22]. In the first study, 83% of stroke patients demonstrated a statistically significant improvement in arm function at rehabilitation discharge, while 68% achieved a shift from severe to mild/moderate upper arm disability on discharge. The second study reported that 45% of patients had a statistically significant change in arm function recovery at rehabilitation discharge.

In addition, the study by Ee et al. [23] indicated that the percentage of totally dependent post stroke patients was statistically significantly lower in terms of the Rehabilitation Profile System (RPS) at discharge. Moreover, Gialanella et al. [24] demonstrated that patients had statistically significant improved mobility, measured by the Lindmark and the Rivermead Mobility Index (RMI), as well as neurological status, measured in terms of the National Institute of Health Stroke Scale (NIH). It is worth noting that 80.5% of patients were ambulatory independent at discharge contrary to 1.4% on admission, an impressive outcome improvement.

Four studies evaluated the long-term benefits of inpatient rehabilitation [8,21,25,26]. Sim et al. [8] demonstrated that the gains in patients' functional status were generally maintained one year after discharge, with a further statistically significant improvement in toileting. Furthermore, Mutai et al. [25] reported that 51.9% were classified as independent in terms of their Activities of Daily Living (ADL), 1-5 years after discharge. According to Mahler et al. [26] the

Figure 1: Flowchart of systematic review.

Articles identified through database searching (duplicates excluded): 1,764

1,687 Articles excluded after screening from abstract/title - not relevant.

84 Articles for further assessment (if full text available, relevant full text).

40 Studies excluded:
- 24 did not fit inclusion criteria.
- 3 irrelevant aim of interest.
- 4 insufficient results.
- 3 irrelevant outcomes of interest.
- 6 with abstract only available.

44 Articles accepted for review.

2 Additional articles identified through other sources (e.g. bibliographies of screened studies or relevant systematic reviews).

46 Studies included.
<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>Study design</th>
<th>Sample size</th>
<th>Age</th>
<th>Outcome measures</th>
<th>Follow up</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shah et al. [7]</td>
<td>Australia</td>
<td>Prospective</td>
<td>258</td>
<td>mean age</td>
<td>Bl: (0-100)</td>
<td>On admission to rehab vs. at discharge:</td>
<td>BI (mean): 44 vs. 78 s.s.</td>
</tr>
</tbody>
</table>
| Sim et al. [8] | Hong Kong| Retrospective/ prospective | 185 | mean age ± SD 69 ± 11.1 | Bl: (0-100) % of independent pts 1 year after discharge | On admission to rehab vs. at discharge: | BI (median, IQR): 55 (30-75) vs. 90 (70-100) p<0.05
Discharge vs. 1 year follow-up (n=112): BI (median, IQR): 90 (85-100) vs. 100 (85-100) p<0.05
% independent pts 74.1% vs. 83.9% walking 68.8% vs. 85.7% toileting p<0.05 |
| Kuptniratsakul et al. [9] | Thailand | Prospective | 327 | mean age ± SD 62.1 ± 12.2 | Bl: (0-20) HADS: % of pts with anxiety and depression QoL assessment (24-120) | On admission to rehab vs. at discharge: | BI (mean ± SD): 7.48 (± 3.96) vs. 13.27 (± 4.86) p<0.001
% pts with anxiety: 25.5% vs. 6.8% p<0.001
% pts with depression: 37.8% vs. 16.3% p<0.001 QoL score (mean ±SD): 69.74 (± 11.75) vs. 77.72 (± 10.69) p<0.001 |
| Balaban et al. [10] | Turkey | Retrospective | 80 | mean age ± SD 63.54 ± 13.62 | Bl: (0-100) FIM: (18-126) | On admission to rehab vs. at discharge: | BI (mean): 49.13 vs. 78 p<0.001
FIM (mean): 67.97 vs. 91.91 p<0.001 |
| Yavuzer et al. [11] | Turkey | Retrospective | 67 | mean age ± SD 60 ± 11.8 | FIM: (18-126) | On admission to rehab vs. at discharge: | FIM (mean ± SD): 75.0 (± 2.9) vs. 86.7 (± 24.2) p<0.001 |
| Gökkaya et al. [12] | Turkey | Prospective | 83 | mean age ± SD 58 ± 12 | FIM: (18-126) | On admission to rehab vs. at discharge: | FIM (mean ± SD): 56.5 (± 18.6) vs. 74.6 (± 19.0) p<0.01 |
| Giaquinto et al. [13] | Italy | Prospective | 111 | | FIM: (18-126) | On admission to rehab vs. at discharge: | FIM (mean): 62 vs. 101 p<0.0001 |
| Foley et al. [14] | Canada | Retrospective | 123 | mean age ± SD 67 ± 15 | FIM: (18-126) Motor-FIM: (13-91) Cognitive-FIM: (535) % of pts discharged to community | On admission to rehab vs. at discharge: | FIM (mean ± SD): 77 (± 25) vs. 103 (± 22)
Motor-FIM (mean ± SD): 52 (± 22) vs. 74 (± 19)
Cognitive-FIM (mean ± SD): 25 (± 6) vs. 29 (± 5)
74% returned home upon discharge |
| Gagnon et al. [15] | Canada | Retrospective | 422 | mean age ± SD 71.9 ± 10.5 | FIM: (18-126) Motor-FIM: (13-91) Cognitive-FIM: (535) % of pts discharged to community | On admission to rehab vs. at discharge: | FIM (mean ± SD): 86.1 (± 21.7) vs. 107.7 (± 16.7)
Motor-FIM (mean ± SD): 58.8 (± 19.2) vs. 78.1 (± 13.5)
Cognitive-FIM (mean ± SD): 27.2 (± 6.4) vs. 29.6 (± 5.6)
84% returned to their prior living arrangement |
| Teasell et al. [16] | United Kingdom | Retrospective | 196 | mean age ± SD 72 ± 11 | FIM: (18-126) % of pts with higher, lower, unchanged scores % of pts discharged to community | On admission to rehab vs. at discharge: | FIM (mean, IQR): 46 (IQR 20, range:19-96) vs. 70 (IQR 30, range: 18-121) p<0.0001
94.5% had higher discharge FIM scores /4.4% had lower FIM discharge scores /1.1% did not change 43.4% returned to their own home upon discharge |
| Hayward et al. [17] | Australia | Prospective | 239 | mean age ± SD 70 ± 13 | Motor-FIM: (13-91) MCID: (1-point change in MAS6) shift in disability status (i.e. severe to mild-moderate) | On admission to rehab vs. at discharge: | Motor-FIM (mean ± SD): 55 (±23) vs. 76 (± 17) p<0.001
83% achieved a MCID defined by a change of ≥ 17 points 85% shift from severe motor disability to mild-moderate motor disability at discharge |
| Hayward et al. [22] | Australia | Prospective | 226 | mean age ± SD 71 ± 13 | MAS6: MAS6≥2 mild moderate upper arm disability MAS6 ≤ 2 severe upper arm disability MCID: (1-point change in MAS6) shift in disability status (i.e. severe to mild-moderate) | On admission to rehab vs. at discharge: | % of pts with MAS6 ≥ 2: 100% vs. 55% p<0.001
% of pts achieved MCID at discharge 45% of pts shifted from severe upper arm disability (MAS6=<2) to mild-moderate upper arm disability (MAS6=2) at discharge |
<table>
<thead>
<tr>
<th>Citation</th>
<th>Country</th>
<th>Study Type</th>
<th>Sample Size</th>
<th>Mean Age ± SD</th>
<th>Mean Motor-FIM ± SD</th>
<th>Mean Cognitive-FIM ± SD</th>
<th>Mean PCS ± SD</th>
<th>Mean MCS ± SD</th>
<th>Follow-up Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madden et al. [18]</td>
<td>Canada</td>
<td>Retrospective</td>
<td>116</td>
<td>71 ± 13</td>
<td>51.7 ± 18.1</td>
<td>27.3 ± 6.4</td>
<td>31.3 ± 7.3</td>
<td>48.8 ± 12.4</td>
<td>81% discharged home</td>
</tr>
<tr>
<td>Ee et al. [23]</td>
<td>Singapore</td>
<td>Retrospective</td>
<td>100</td>
<td>72.7 ± 5.4</td>
<td>42.5 ± 12.2</td>
<td>27.3 ± 6.4</td>
<td>31.3 ± 7.3</td>
<td>48.8 ± 12.4</td>
<td>81% discharged home</td>
</tr>
<tr>
<td>Giananelia et al. [24]</td>
<td>Italy</td>
<td>Retrospective</td>
<td>72</td>
<td>46.5 ± 10</td>
<td>40.4 ± 12.6</td>
<td>27.3 ± 6.4</td>
<td>31.3 ± 7.3</td>
<td>48.8 ± 12.4</td>
<td>81% discharged home</td>
</tr>
<tr>
<td>Mutai et al. [25]</td>
<td>Japan</td>
<td>Retrospective</td>
<td>252</td>
<td>72.4 ± 10.8</td>
<td>40.4 ± 12.6</td>
<td>27.3 ± 6.4</td>
<td>31.3 ± 7.3</td>
<td>48.8 ± 12.4</td>
<td>81% discharged home</td>
</tr>
<tr>
<td>Mahler et al. [26]</td>
<td>Switzerland</td>
<td>Retrospective, cost-analysis</td>
<td>131</td>
<td>73 ± 12</td>
<td>40.4 ± 12.6</td>
<td>27.3 ± 6.4</td>
<td>31.3 ± 7.3</td>
<td>48.8 ± 12.4</td>
<td>81% discharged home</td>
</tr>
<tr>
<td>Moodie et al. [27]</td>
<td>Australia</td>
<td>Economic evaluation</td>
<td>395</td>
<td>73 ± 14</td>
<td>40.4 ± 12.6</td>
<td>27.3 ± 6.4</td>
<td>31.3 ± 7.3</td>
<td>48.8 ± 12.4</td>
<td>81% discharged home</td>
</tr>
<tr>
<td>Khiacharoen et al. [28]</td>
<td>Thailand</td>
<td>Economic evaluation</td>
<td>207</td>
<td>73 ± 14</td>
<td>40.4 ± 12.6</td>
<td>27.3 ± 6.4</td>
<td>31.3 ± 7.3</td>
<td>48.8 ± 12.4</td>
<td>81% discharged home</td>
</tr>
<tr>
<td>Patel et al. [29]</td>
<td>England</td>
<td>Economic evaluation</td>
<td>447</td>
<td>65.5 ± 12.3</td>
<td>40.4 ± 12.6</td>
<td>27.3 ± 6.4</td>
<td>31.3 ± 7.3</td>
<td>48.8 ± 12.4</td>
<td>81% discharged home</td>
</tr>
</tbody>
</table>
Table 3: Studies focusing on stroke patients

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Study Design</th>
<th>Sample Size</th>
<th>Mean Age (SD)</th>
<th>Motor-FIM (Mean ± SD)</th>
<th>Cognitive-FIM (Mean ± SD)</th>
<th>FIM (Mean ± SD)</th>
<th>On Admission to Rehab vs. at Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ng et al. [20]</td>
<td>Singapore</td>
<td>Prospective</td>
<td>866</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graham et al. [21]</td>
<td>USA</td>
<td>Retrospective</td>
<td>93.925</td>
<td>66% aged >65 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentage of independent post stroke patients who underwent inpatient rehabilitation reached 81% as compared to 51% of the patients without inpatient rehabilitation, one year after stroke. Moreover, Graham et al. [21] indicated that 79.7% of patients were successfully maintaining their health status by themselves, 3-6 months after discharge.

Finally, Mahler et al. [26] assessed the effectiveness of inpatient rehabilitation as compared to traditional treatment on stroke patients. The patients who underwent the rehabilitation program had their BI score increased by 42 ± 29 points, as compared to patients without (inpatient) rehabilitation, whose functional level rose by 23 ± 26 points only (p<0.05).

Quality of life outcomes

Quality of life was assessed in three studies [9,18,25]. The study by Mutai et al. [25] indicated that 21.6% of patients suffered from depression 1-3 years after stroke. On the other hand, Kuptniratsaikul et al. [9] highlighted that the number of patients with anxiety and depression was statistically significant lower at discharge. More specifically, 25.5% of patients had anxiety and 37.8% had depression on admission. At discharge, the percentages of patients with anxiety and depression decreased to 6.8% and 16.3%, respectively. In addition, the same study reported that the quality of life scores at discharge were significantly higher than those on admission. Finally, the study by Madden et al. [18] reported that the mean improvement between admission and discharge at the SF-36 (patient-reported survey of patient health) scores was statistically significant.

Economic outcomes

A significant proportion of patients with stroke returned home after discharge. More specifically, four studies [14-16,18] reported that the percentage of patients who returned to their home (without further institutionalization) was 74%, 84%, 43.4%, and 81% respectively. The percentage of the third study [16] is much lower than the others because it referred to patients with severe stroke who were totally ambulatory dependent.

According to the cost analysis of Mahler et al. [26], inpatient rehabilitation is the most significant part of the total health insurance costs in the first year after stroke (37%). However, inpatient rehabilitation's crucial benefit related to the high percentage of independent patients after one year (81%), which in turn may be associated with reduced health care long-term costs. Moodie et al. [27] compared costs and outcomes of stroke patients who received either conventional care or mobile service or stroke unit care (as below). The study demonstrated that although acute Stroke Care Unit (SCU) was more expensive, it was found to be cost-effective compared to a mobile service or conventional care. Khiaocharoen et al. [28] who conducted a cost-utility analysis of rehabilitation for stroke patients in Thailand, concluded that inpatient rehabilitation services for stroke survivors were cost-effective as compared with conventional care. Patel et al. [29] highlighted that the percentages of patients who avoided death/ institutionalization were 87%, 69%, and 78% in the stroke unit, stroke team, and domiciliary care groups, respectively. Finally, Andersson et al. [30] compared the outcomes of two rehabilitation groups, hospital- and home-based respectively. Although the home-based group had significantly lower costs, the number of acute care ward days after a decision about rehabilitation was made was three days in the hospital-based group and nine in the home-based group and the difference was significant. The hospital-based group thereby had a mean duration of 28 in-hospital rehabilitation days and the home-based group had 36 days of home rehabilitation (Table 3).

SC

Overall 18 studies examined the impact of inpatient rehabilitation on SCI patients (Table 4).

Clinical outcomes

Five studies assessed physical and cognitive disability with the FIM scale [19-21,31,32]. Two of them reported a statistically significant improvement in patients' functional status from rehabilitation admission to rehabilitation discharge [31,32]. The remaining three studies indicated that the patients' total FIM score (physical and
<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>Study design</th>
<th>Population characteristics</th>
<th>Outcome measures</th>
<th>Follow up</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yarkoni et al. [33]</td>
<td>USA</td>
<td>Retrospective</td>
<td>711 (n=188) complete quadriplegia (n=201) incomplete quadriplegia (n=211) complete paraplegia (n=111) incomplete paraplegia (n=388) quadriplegia(n=322) paraplegia</td>
<td>mean age complete lesion: 71.1 mean complete lesion: 26.2</td>
<td>MBI: (100-point scale) -self-care subscore (-2 to 53) (higher score, higher independence) -mobility subscore (0 to 47) (higher score, higher independence)</td>
<td>On admission to rehab vs. at discharge: complete quadriplegia MBI (mean): 7.7 vs. 21.1 incomplete quadriplegia MBI (mean): 19.5 vs. 60.6 s.s. complete paraplegia MBI (mean): 35.2 vs. 71.2 incomplete paraplegia MBI (mean): 42.4 vs. 80.5 s.s. quadriplegia total-MBI (mean): 13.8 vs. 46.1 paraplegia total-MBI: 37.7 vs. 74.4</td>
</tr>
<tr>
<td>Ferdiana et al. [44]</td>
<td>Netherlands</td>
<td>Prospective</td>
<td>114 mean age ± SD 42.1 ± 11.6</td>
<td>% of pts in paid employment for at least 1 h/week at least 12 h/week</td>
<td>5 years after discharge</td>
<td>50.9% returned to work for at least 1 h/week 42.6% returned to work for at least 12 h/week median number of working hours before injury vs. 5 years follow-up: 44.1 ± 22.6</td>
</tr>
<tr>
<td>Haisma et al. [31]</td>
<td>Netherlands</td>
<td>Prospective</td>
<td>182 mean age ± SD 40 ± 14</td>
<td>Motor-FIM: (13-91) SIP68: physical sum score: range 0-29 social sum score: range 0-22 (the higher the score, the more limited the functional status)</td>
<td>1 year after discharge</td>
<td>On admission to rehab vs. at discharge: Motor-FIM (mean ± SD):44 ± 18) vs. 69 (± 17) p<0.01 At follow-up(n=133): physical SIP68: 12 (± 7) social SIP68: 6 (± 4)</td>
</tr>
<tr>
<td>New et al. [32]</td>
<td>Australia</td>
<td>Retrospective</td>
<td>70 mean age ± SD 69</td>
<td>Total Rasch FIM cognitive Rasch FIM subscore:100-point scale motor Rasch FIM subscore:100-point scale</td>
<td>On admission to rehab vs. at discharge: cognitive Rasch score (mean): 80.6 (± 19.9) vs. 81.2 (± 20.1) not s.s. motor Rasch score (mean): 39.6 (± 16.1) vs. 58.7 (± 15.8) p<0.001 raw motor Rasch FIM gain (mean): ASIA grade A,B,C paraplegia: 15.8 p<0.002 ASIA grade D paraplegia: 23.8 p<0.001 ASIA grade A,B,C tetraplegia: 8.3 not s.s. ASIA grade D tetraplegia: 30.4 p<0.001</td>
<td></td>
</tr>
<tr>
<td>Schönhrer et al. [35]</td>
<td>Netherlands</td>
<td>Retrospective</td>
<td>55 mean age ± SD 33</td>
<td>Functional outcome: 9 activities of daily living, set of 3 skills (mean score per set 0-9 points) -self-care skills -ambulation skills -bladder and bowel skills (0=dependent 9=independent)</td>
<td>On admission to rehab vs. at discharge: self-care score (mean): 4.6 ± 7.6 p<0.01 ambulation score (mean):3.2 vs. 6.3 p<0.01 bladder and bowel score (mean): 1.3 vs. 5.8 p<0.01</td>
<td></td>
</tr>
<tr>
<td>Sturt et al. [36]</td>
<td>Australia</td>
<td>Prospective</td>
<td>62 mean age ± SD 67</td>
<td>Walking ability: TUG: time taken to complete the test and the seat height 10 mW/T: time taken to complete the test and the number of steps taken 6MWT: the distance the subject could complete in 6min and the number of rests during the test</td>
<td>48% of pts regained some capacity to walk. On admission to rehab vs. at discharge: TUG mean (n=27): 57 ± 33 s normal=85.5 s p<0.001 10 mW/T mean (n=27): 51 ± 29 s normal=130.6 ms for men/1.29ms for women 6MWT mean (n=20): 129 m vs. 220 m normal=659 ± 62 m</td>
<td></td>
</tr>
<tr>
<td>Yen et al. [37]</td>
<td>Singapore</td>
<td>Retrospective</td>
<td>231 mean age ± SD 39 ± 17</td>
<td>Neurological outcome: Frankel classification (grades A-E, A: motor/ sensory function absent E: motor/ sensory function normal) Functional outcome: Ambulatory status (independent/ non-ambulant) ADL ability (independent/ requiring assistance) Bladder outcome (pts' method of voiding) Vocational status (% of pts returned to some form of vocation)</td>
<td>On admission to rehab vs. at discharge: % of pts with Frankel scale D/E: 26.6% vs. 59.6% % of pts upgraded Frankel scale from admission to discharge: initially Frankel scale A:25.7% initially Frankel scale B:23.1% initially Frankel scale C:76.2% initially Frankel scale D:16.7% % of pts totally independent in ADL: 2.7% vs. 20% % of pts urinary-catheter totally dependent: 63.6% vs. 7.8% 48.9% of pts independent with aids in ADL at discharge 21.6% of pts returned to some form of vocation 1-year post injury 87.9% discharged home</td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Country</td>
<td>Study Design</td>
<td>Sample Size</td>
<td>Mean Age</td>
<td>Neurological Outcome</td>
<td>Quality of Life and Economic Outcomes</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>--------------------</td>
<td>-------------</td>
<td>----------</td>
<td>----------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Citterio et al.</td>
<td>Italy</td>
<td>Prospective</td>
<td>330</td>
<td>55.2</td>
<td>-</td>
<td>% of pts with AIS gain >10% on admission, % of pts returned home, % of pts with pressure ulcers</td>
</tr>
<tr>
<td>Franceschini et al.</td>
<td>Italy</td>
<td>Retrospective, prospective</td>
<td>251 (146 follow-up)</td>
<td>37.8</td>
<td>-mortality rate -Quality of Life: satisfaction with QoL questionnaire (two evaluation scales: autonomy and QoL) - range 0-10, the higher the score the more satisfied with QoL - % of pts returned to work</td>
<td>6 years after discharge mortality rate from discharge to 6-years follow up: -autonomy mean score 6.5 -QoL mean score 6.5 -29.5% was employed -61% left home on a daily basis -64.4% could leave home without assistance -48.6% was satisfied with partner relationships</td>
</tr>
<tr>
<td>Schonherr et al.</td>
<td>Netherlands</td>
<td>Retrospective</td>
<td>57</td>
<td>33 ± 11</td>
<td>-</td>
<td>2-12 years after injury 67% "satisfied" with vocational & leisure participation preinjury vs. follow-up hours spent in: -paid work: 41.6 % vs. 19.5 % p<0.05 -small jobs at home: 5.1 % vs. 3.3 % p<0.05 -total vocational participation: 57.2 % vs. 33.5 % p=0.05 -sports: 4.0 vs. 1.2 p=0.05 -time for self-care: 3.3 % vs. 8.1 % p<0.05 -less than half of employed vs. follow-up: 86% vs. 60% -28% of pts reported help from the rehab team in finding new hobbies or sports</td>
</tr>
<tr>
<td>van Asbeck et al.</td>
<td>Netherlands</td>
<td>Prospective</td>
<td>117</td>
<td>≥ 18</td>
<td>-</td>
<td>housing status (% of pts) work/household status (% of pts) sport/hobbies status (% of pts) 8-15 years after discharge 93% of pts were independent (own/rented house, adapted house) 32.4% employed 36.7% household activities 41% were still active in sport (basketball, table tennis, wheelchair racing) 86.3% had at least one hobby</td>
</tr>
<tr>
<td>Franceschini et al.</td>
<td>Italy</td>
<td>Retrospective, prospective</td>
<td>403</td>
<td>41.8 ± 16.3</td>
<td>-</td>
<td>% of pts employed at the end of follow up 3.8 years after injury At the time of injury vs. at the end of follow-up: % of employed:63.4% vs. 42.1% employed vs. unemployed: -perceived quality of life:6.9 ± 2 vs. 5.3 ± 2.8 p<0.0001 -satisfying sex life (%): 38% vs. 26.6% p<0.02 -leaving home for leisure time (%): 72.4 ± 37.3 p<0.0001 practicing sports (%): 45.3 ± 18.5 p<0.0001</td>
</tr>
<tr>
<td>van Velzen et al.</td>
<td>Netherlands</td>
<td>Prospective</td>
<td>118</td>
<td>38</td>
<td>-</td>
<td>% of pts returned to paid work for at least 1h/week 1 year after discharge 33% returned to work (all participants were in paid employment before injury) median number of working hours before injury vs. 1-year follow-up: 40.63 vs. 20.69</td>
</tr>
<tr>
<td>van Velzen et al.</td>
<td>Netherlands</td>
<td>Prospective</td>
<td>103</td>
<td>range 18-65</td>
<td>-</td>
<td>% of pts returned to paid work for at least 1hour/week 5 years after discharge 44.7% returned to work (all participants were in paid employment before injury) median number of working hours before injury vs. 5-years follow-up: 40 vs. 20 22% of RTW group were working full-time 78% of RTW group were working part-time</td>
</tr>
<tr>
<td>Bode et al.</td>
<td>USA</td>
<td>Retrospective</td>
<td>52</td>
<td>mean ± SD 35.5 ± 15.7</td>
<td>Motor-FIM score: (0-100) Cognitive-FIM score: (0-100)</td>
<td>On admission to rehab vs. at discharge: Motor-FIM (mean ± SD): 20.6 (± 16.7) vs. 86.5 (± 17.4) Cognitive-FIM (mean ± SD): 45.6 (± 15.3) vs. 91.9 (± 13.3)</td>
</tr>
<tr>
<td>Ng et al.</td>
<td>Singapore</td>
<td>Prospective</td>
<td>145</td>
<td>mean ± SD 61.3 ± 15</td>
<td>Motor-FIM score: (18-126) Cognitive-FIM score: (13-91) Cognitive-FIM score: (5-35)</td>
<td>On admission to rehab vs. at discharge: total FIM (mean ± SD): 68.5 (± 21.1) vs. 86.6 (± 23.6) p<0.01 Motor-FIM (mean ± SD): 37.7 (± 18.6) vs. 54.9 (± 20.6) Cognitive-FIM (mean ± SD): 30.8 (± 5.9) vs. 31.6 (± 5.7) p<0.01</td>
</tr>
</tbody>
</table>
cognitive) was significantly higher at rehabilitation discharge [19-21]. Additionally, Graham et al. [21] reported that follow-up (3-6 months) FIM total ratings remained from table to slightly increased over time in 75.4% of patients.

Two studies indicated that the improvement of patients’ functional ability was statistically significant after admission to rehabilitation program, as measured by the BI scale [33,34]. Furthermore, the study by Scivoletto et al. [34] demonstrated that all functional and neurological scales showed statistically significant improvements in SCI patients, despite the delayed onset, of rehabilitation treatment.

Four studies reported that a great number of patients showed a significant improvement in ambulation and achieved independence or assisted dependence in walking at rehabilitation discharge [34-37]. More specifically, Scivoletto et al. [34] reported that at admission only 11% of patients were able to walk independently relative to 41% at discharge whereas the same percentages were reported to be 5.3% and 45.2% respectively in the study by Yen et al. [37]

Regarding bladder status [34,35,37], self-care [35], and activities of daily living [37], inpatient rehabilitation had a significantly positive impact on patients’ ability to perform independently the aforementioned activities.

Quality of life outcomes

Francescini et al. [38] presented data indicating that SCI patients reported to be satisfied with their current quality of life (6.5 QoL score, 10 max score) and that 48.6% were satisfied with their partner relationships, 6 years after rehabilitation discharge. Additionally, 67% of patients were satisfied with their quality of life, 2-12 years after rehabilitation discharge, as reported by Schonherr et al. [39]. With regard to sports and hobbies, 86.3% of patients had at least one hobby 8-15 years after rehabilitation discharge whereas 41% of them were still active in sport, as reported by van Asbeck et al. [40].

Economic outcomes

As far as productivity loss is concerned, eight studies evaluated patients’ ability to return to some form of vocation within a reasonable period of time after injury [37-44]. More specifically, Yen et al. [37] indicated that 21.6% of SCI patients returned to some form of vocation one year post-injury while Franceschini et al. [38] showed that 29.5% were employed six years post-injury. The study by Schonherr et al. [39] demonstrated that most people with SCI were able to resume work 2-12 years after injury. In particular, 60% of patients had a job at the time of follow-up. Franceschini et al. [41] reported that 42.1% of SCI patients were employed at the time of follow-up (3.8 years). Finally, 32.4% of patients were employed and 36.7% were housekeeping 8-15 years after rehabilitation as reported by van Asbeck et al. [40].

Three studies in which all the patients were employed at the time of injury demonstrated that the percentages of them who were able to return to paid work for at least 1 hour/week within 5 years after discharge from inpatient rehabilitation were 33%, 44.7%, and 59.9% respectively.

According to the study by Scivoletto et al. [34] 90% of patients who underwent rehabilitation returned to their home while Citterio et al. [45] and Yen et al. [37] reported those percentages to be 73% and 87.9% respectively.

Finally, there were no economic evaluation studies identified that assessed inpatient rehabilitation’s outcomes for SCI patients (Table 4).

Multiple Sclerosis

Overall, seven studies examined the impact of inpatient rehabilitation on MS patients (Table 5).
Clinical outcomes

Two studies found that the patients’ discharge neurological status was not significantly different from the admission as evaluated by means of Expanded Disability Status Scale (EDSS) [46,47]. According to the study by Freeman et al., improvements were maintained in disability (Functional Independent Measure) and handicap (London Handicap Scale) for 6 months after discharge but neurological status (EDSS) demonstrated a gradual deterioration within 1 year after discharge [48]. The study by Kidd et al. indicated that 17% of MS patients were improved on the EDSS [49], while Aisen et al. reported that MS patients were achieved statistically significant improvement between admission and discharge EDSS mean scores [50].

<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>Study design</th>
<th>Sample size</th>
<th>Age</th>
<th>Outcome measures</th>
<th>Follow up</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidd et al. [46]</td>
<td>United Kingdom</td>
<td>Retrospective</td>
<td>79</td>
<td>mean age ± SD</td>
<td>48.8 ± 7.4</td>
<td>Impairment DSS: (0-10)</td>
<td>On admission to rehab vs. at discharge: DSS (mean ± SD): 7 (± 0.9) vs. 7 (± 1.1) BI (mean ± SD): 14 (± 5.2) vs. 17 (± 4.9) p<0.0001 ESS (mean ± SD) n=52: 19 (± 7.5) vs. 19 (± 8.1) 20% improved DSS score 44% improved BI score 18% improved neurologically (as determined by clinical examination)</td>
</tr>
<tr>
<td>Freeman et al. [48]</td>
<td>United Kingdom</td>
<td>Prospective</td>
<td>50</td>
<td>mean age ± SD</td>
<td>44.8 ± 9.7</td>
<td>EDSS: (0-10) Motor-FIM: (13-91) LHS: (0-100) SF36: (0-100) PCS max 50 MCS max 50</td>
<td>On admission to rehab vs. at discharge (n=50) vs. at follow up (46): EDSS (median): 6.8 vs. 6.8 vs. 8.0 Motor-FIM (median): 61.5 vs. 74 vs. 63.5 LHS (median): 60.3 vs. 64.4 vs. 61.6 SF36-physical component (mean): 27.8 vs. 46.1 vs. 28.4 SF36-mental component (mean): 39.2 vs. 43.4 vs. 45.0</td>
</tr>
<tr>
<td>Khan et al. [52]</td>
<td>Australia</td>
<td>Retrospective</td>
<td>110</td>
<td>mean age</td>
<td>52</td>
<td>FIM: (18-126)</td>
<td>On admission to rehab vs. at discharge: FIM (mean): 85.6 vs. 97.0 p<0.001</td>
</tr>
<tr>
<td>Kidd et al. [49]</td>
<td>United Kingdom</td>
<td>Prospective</td>
<td>47</td>
<td>mean age ± SD</td>
<td>40 ± 11</td>
<td>Impairment DSS: (0-10)</td>
<td>On admission to rehab vs. at discharge vs. at follow up DSS median (range): 7.5 (5.0-9.0) vs. 7.0 (4.0-9.0) vs. 7.0 (2.5-9.0) Motor-FIM median (range): 66 (13-85) vs. 80 (18-90) vs. 77 (18-90) ESS median (range): 19 (2-31) vs. 18.5 (4-30) vs. 17 (3-32) On admission to rehab vs. at discharge: 3 months after discharge overall improvement in FIM motor (% of patients): 87% improved motor FIM score p<0.001 47% improved ESS score At follow up (n=44): 14% deteriorated in motor FIM 30% improved on ESS 86% maintained functional gains</td>
</tr>
<tr>
<td>Freeman et al. [51]</td>
<td>United Kingdom</td>
<td>Randomized control study</td>
<td>66 treatment group:32 control group:34</td>
<td>mean age treatment group: 43.2 control group: 44.6</td>
<td>EDSS: (0-10) Motor-FIM: (13-91) LHS: (0-100)</td>
<td>treatment group vs. control group (at the end of 6 weeks of rehab/ no rehab): EDSS (median): 6.5 vs. 6.5 Motor-FIM (median): 67 vs. 69.5 p<0.001 LHS (median): 61.5 vs. 66.2 overall improvement in FIM motor (% of patients): 72% vs. 29% p<0.001 change in LHS (score)+2.9 vs. -2.7 p<0.01 change in LHS (% of patients): 53% vs. 23% p<0.01</td>
<td></td>
</tr>
</tbody>
</table>
In terms of the percentage of patients who improved, deteriorated, or remained the same, overall, 53% of the treatment group had improved their total handicap score, 3% remained the same, and 44% deteriorated. In contrast, 23% of the control group improved, 12% stayed the same, and 65% deteriorated.

Quality of life outcomes

With regard to health related quality of life measurement, in terms of the SF-36, Freeman et al. [48] reported that 54% of patients achieved maximum scores at 3 months after discharge and 28.2% at 6 months (in the physical dimension). In contrast, in the mental dimension, 21% of patients peaked at 3 months, with most (61%) peaking at 6 months.

Economic outcomes

Finally, there were no economic evaluation studies identified that assessed inpatient rehabilitation outcomes for MS patients (Table 5).

Discussion

We systematically reviewed the available literature containing studies that evaluated the clinical, functional, and economic benefits of inpatient rehabilitation for stroke, SCI, and MS patients. This study is

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Study Design</th>
<th>Mean Age ± SD</th>
<th>Treatment</th>
<th>Control</th>
<th>Follow-up</th>
<th>Disability Scale</th>
<th>Effectiveness EDSS</th>
<th>Effectiveness BI</th>
<th>Effectiveness RMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aisen et al. [50]</td>
<td>USA</td>
<td>Retrospective</td>
<td>37</td>
<td>EDSS: 6.6</td>
<td>Control: 6.7</td>
<td>6-36 months after discharge</td>
<td>Mild group</td>
<td>230</td>
<td>220</td>
<td>19.6% improved on EDSS</td>
</tr>
<tr>
<td>Grasso et al. [47]</td>
<td>Italy</td>
<td>Retrospective</td>
<td>36</td>
<td>EDSS: 6.5</td>
<td>Control: 6.6</td>
<td>Follow up 24-36 months after discharge</td>
<td>Mild and moderate group</td>
<td>230</td>
<td>220</td>
<td>49% improved on RMI</td>
</tr>
</tbody>
</table>

Table 5: Studies focusing on multiple sclerosis patients.
important as it may provide insights into the evidence produced so far and what needs further research and future studies. We identified and included 46 articles in the review. Although the types of methodologies, measures and populations studied varied widely, we were able to identify clear health and economic benefits stemming from physical inpatient rehabilitation both for patients and healthcare systems.

In particular, there was strong evidence supporting the functional and neurological benefits of post-acute inpatient rehabilitation for all patient groups and situations. Also, there was moderate evidence to report that patients had a statistically significant gain in health-related quality of life outcomes. Finally, it was shown that the gains in patients’ functional and disability status were generally maintained after discharge except for the MS patients in whom neurological status demonstrated a gradual deterioration after rehabilitation discharge over time. Moreover, the evidence indicates that the effectiveness of inpatient rehabilitation may be influenced by factors such as the age of patients, their medical history, socio-economic status and onset of rehabilitation.

Our findings are in line with those presented in previously conducted systematic reviews which examined specifically the outcomes of inpatient rehabilitation on stroke [53,54], SCI [55], and MS [56] patients. More specifically, the study by Knecht et al. [54] reported that well-organized acute and intermediate rehabilitation after stroke can provide patients with the best functional results. Furthermore, the study by Lam et al. [55] showed that inpatient rehabilitation focused on gait training can offer the greatest benefits to functional ambulation in sub-acute or chronic spinal cord injury. Moreover, a study by Khan et al. [56] indicated that inpatient rehabilitation does not change the level of impairment, but can improve the experience of people with multiple sclerosis in terms of activity and participation.

In terms of the economics, there is very scarce evidence. Notwithstanding, the low number of studies, it appeared that in certain settings rehabilitation may be cost-effective in patients with stroke and spinal injury. There were no studies available for multiple sclerosis patients.

In terms of the studies available, it appears that the majority of studies assessing the effectiveness of inpatient rehabilitation were prospective, with most of them, up to a year. Moreover, there is no consistency in terms of how effectiveness was quantified as many different measures were utilized. Finally, it should be noted that programs were not standardized and were also delivered in different settings. In terms of the economic studies, from a methodological point of view, most of them are short-term and they mainly focus on the health care system, based on cost-effectiveness or cost minimization modelling. Hence, they may underestimate the economic benefits of rehabilitation as it is associated with longer economic benefits for the health system due to resource utilization reductions and indirect benefits for the economy and society due to higher productivity, superior functioning and return to employment. Hence, long-term cost-benefit analyses are more appropriate for evaluating it. Therefore, despite the availability of several studies in the field concerning the effectiveness of inpatient rehabilitation on the three health conditions of interest, it is evident that there is lack of economic evaluations and long-term studies whereas there is increased variability in terms of the outcomes considered. Therefore, further research is required in order to establish more vividly the benefits of inpatient rehabilitation and influence decision making and patient management.

The results of this review must be interpreted in light of the methodological pitfalls of studies of this kind. We should acknowledge the possibility of publication bias due to the fact that only published studies, written in English language, were incorporated in our review. In addition, the search was limited to free databases. Moreover, the studies which were identified in this review covered a wide range of methodologies, outcome measures, and patient populations and consequently the heterogeneity of these studies prevented us from any quantitative estimates, of the overall benefits of inpatient rehabilitation and from forming a formal meta-analysis. Also, our review did not take into account information such as severity of disease, intensiveness of intervention, and length of stay. Furthermore, the information regarding the perspective of economic evaluation studies is not available. Finally, it should be also acknowledged that, unlike other treatments such as drugs, rehabilitation is not homogenous and standard therapy across different settings, and often data on the content and related information on rehabilitation programs evaluated is missing or differs across studies.

Conclusion

Despite the heterogeneity of outcomes and the limitations of this systematic review, there is abundant and clear evidence supporting the effectiveness and benefits of inpatient rehabilitation. In summary, inpatient rehabilitation improves clinical outcomes for patients with disability or impairment due to stroke, spinal cord injury, and multiple sclerosis. There is also scarce evidence that inpatient rehabilitation may be cost saving or highly cost-effective, especially for patients with stroke. Additional effectiveness and economic evaluation studies may contribute more to the evidence supporting the issue of rehabilitation for patients cost to inform policy and decision making and to improve patient access and outcomes of therapy.

Funding

This research received funding from the “ANAGENNISI” Recovery, “ANIMUS” and Rehabilitation Center S.A.

References

the Turkish experience. Int J Rehabil Res 29: 105-111.