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Abstract
Heart failure (HF) continues to have a sufficient impact on morbidity, mortality and disability in developed countries. 

Growing evidence supports the hypothesis that microparticles (MPs) might contribute to the pathogenesis of the 
HF development paling a pivotal role in the regulation of the endogenous repair system, thrombosis, coagulation, 
inflammation, immunity and metabolic memory phenomenon. Therefore, there is a large body of data clarifying the 
predictive value of MP numerous in circulation among subjects with HF. Although determination of MP signature is 
better than measurement of single MP circulating level, there is not yet closely confirmation that immune phenotype 
of cells produced MPs are important for HF prediction and development. The aim of the review: to summarize 
knowledge regarding the measurement of number of various MPs subsets in HF patients.
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STEMI:ST: Segment Elevation Myocardial Infarction; PGF: Placental 
Growth Factor; PLGA: Poly Lactic-co-Glycolic Acid; VCAM: Vascular 
Cell Adhesion Molecule; VEGF: Vascular Endothelial Growth Factor

Introduction
Heart failure (HF) continues to have a sufficient impact on 

morbidity, mortality and disability in developed countries [1]. However, 
within last decades the prevalence of HF have been progressively 
decreased predominantly HF with reduced left ventricular ejection 
fraction (HFrEF) [2]. In contrast, frequency of novel cases of HF with 
preserved left ventricular ejection fraction (HFpEF) appears to be raised 
[3]. These changes in epidemiology of HF depend in particularly on the 
implementation of contemporary strategy regarding early diagnosis, 
prevention, treatment of HF [4], as well as resulting in effect of aging, 
sex, socioeconomic status and co-morbidities [5-8]. Nevertheless, male 
gender, current smoker status, increased highly sensitive troponin T, 
and previous myocardial infarction were associated with new onset 
HFrEF, whereas female gender, history of atrial fibrillation, increased 
urinary albumin excretion, and cystatin C were conferred new onset 
HFpEF [9]. However, higher age, obesity and increased N-terminal 
pro-B-type natriuretic peptide (NT-proBNP) increased the risk for 
both HFpEF and HFrEF [9].

Although improving the management of HF remains a priority 
for health care services, the outcome of HF patients remains poor 
despite modern pharmacological and none-pharmacological 
therapies including established devices i.e. cardiac resynchronization 
therapy devices and implantable defibrillator/cardioverters [8,10]. 
Furthermore, the clinical outcomes of both phenotypes of HF have 
been occurred similar or at least not sufficiently distinguished [11] that 
is important challenge for contemporary medical care service. 

There is growing awareness of the role of several predictive tools 
reflecting various pathophysiological stages of cardiac dysfunction 
development for risk stratification of the patients with both phenotypes 
of HF. Most studies have described the utility of biological markers in 
HF for diagnosis, prediction, and even biomarker-guided therapy, but 
by now natriuretic peptides, soluble ST2, galectin-3, and high sensitive 
cardiac specific troponins were validated only [4,12]. As expected, the 
routine use of biomarkers on diagnosis of HF might help to stratify 
the patients at higher risk of death and clinical outcomes. In fact, 
both 2012 European Society of Cardiology (ESC) Guidelines for the 
Diagnosis and Treatment of Acute and Chronic Heart Failure and 
2013 American College of Cardiology Foundation/American Heart 
Association (ACCF/AHA) Guideline for the Management of Heart 
Failure are well accepted by many clinicians regarding diagnosis and 
prognosis of HFrEF. In contrast, diagnosis and prediction of HFpEF 
with biomarkers is still challenging for practitioners [13]. However, 
there was not a large body of evidence regarding perspectives to may 
provide clinically useful prognostic information both concerning the 
future risk of HFpEF/HFrEF manifestation in asymptomatic subjects, 
the risk of fatal events and primary/re-admissions in the hospital in 
individuals for those have already established symptomatic acute, 
acutely decompensated/advanced, and chronic stable HF related 
to ischemic and non-ischemic causes [14]. It is suggested that multi 
morbidity in HF may limit the diagnostic and predictive utility of 
biomarkers [15].

There are current available data regarding the role of cardiac 
remodeling, inflammation, thrombosis, worsening of endothelial 
integrity and endothelium injuries are common for HF onset and 
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development beyond etiology [16,17]. Moreover, HF may closely 
associate with release of newly detectable circulating biomarkers 
currently called microparticles (MPs) [18,19]. The aim of the review: to 
summarize knowledge regarding the role of various MPs in diagnosis 
and prognosis of HF.

Definition, Classification, Structure and Regulation of 
Microparticles

MPs are defined a heterogeneous sub-population of extracellular 
vesicles (EVs) with diameter average from 100 to1000 nm originated 
from plasma membranes of mother’ cells. EVs are phospholipid-based 
endogenously produced particles (30-1000 nm in diameter), which 
contain cell-specific collections of proteins, glycoproteins, lipids, nucleic 
acids and other molecules. Abundant cells including cardiomyocites, 
blood cells, endothelial cells, immune cells, and even tumor cells are 
capable to secrete MPs of different size and compositions. 

Depending on their origin EVs are graduated to follow subsets, i.e. 
the exosomes (30–100 nm in diameter), the microvesicles (50–1000 
nm in diameter), ectosomes (100–350 nm in diameter), small-size MPs 
(<50 nm in diameter) known as membrane particles and apoptotic 
bodies (1-5 µm in diameter). The exosomes are formed by inward 
budding of the endosomal membrane and are released on the exocytosis 
of multivesicular bodies (MVBs) known as late endosomes, whereas 
the microvesicles are attributed via budding from plasma membranes 
[20]. However, the exosomes have been predominantly labeled in the 
case of immune cells (macrophages, T cells, B cells and dendritic cells) 
and tumor cells. Unlike the exosomes, the ectosomes are ubiquitous 
microvesicles assembled at and released from the plasma membrane 
[21].

MPs are released by cellular vesiculation and fission of the 
membrane of cells [22]. Under normal physiological condition 
a phospholipid bilayer of plasma membrane of cells represented 
phosphatidylserine and phosphatidylethanoalamine in inner leaflets, 
whereas phosphatidylcholine and sphingomyelin represent in the 
external leaflets. The asymmetrical distribution of phospholipids in the 
plasma membrane is supported by activity of three major intracellular 
ATP-dependent enzyme systems, i.e. flippase, floppase, and scramblase. 
Because aminophospholipids are negatively charged, but phospholipids 
exhibit neutral charge, the main role of intracellular enzyme systems is 
supporting electrochemical gradient. Both flippase and floppase belong 
to family of ATP-dependent phospholipid translocases.

The flippase translocates phosphatidylserine and 
phosphatidylethanoalamine from the external leaflets to the inner 
one. The floppase transports phospholipids in the opposite direction. 
Finally, scramblase being to Ca2+-dependent enzyme system exhibits 
unspecifically ability of moving of phospholipids between both leaflets 
of plasma membrane.

Importantly, disappearing of the asymmetrical phospholipid 
distribution in the bilayer of the cell membrane is considered a clue for 
vesiculation and forming of MPs. Indeed, both processes of apoptosis 
or cell activation are required asymmetry in phospholipid distribution 
that leads to cytoskeleton modifications, membrane budding and MPs 
release. The mechanisms of vesiculation affect genome and may mediate 
by some triggers including inflammation [23], while in some cases 
there is a spontaneous release of MPs from stable cells or due to injury 
from necrotic cells or from mechanically damaged cells. Particularly, 
the MPs are released in both constitutive and controlled manners, 
regulated by intercellular Ca2+ and Rab-GTP-ases and activation of 

μ-calpain. μ-Calpain is a Ca2+-dependent cytosolic enzyme belong to 
protease, which cleaves talin and α-actin, leading to decreased binding 
of integrins to the cytoskeleton and a reduction in cell adhesion 
and integrity. Finally, interaction of the actin and myosin is a main 
component for cytoskeleton modification that creates a contractile 
force and drives the formation of membrane MPs.

Recently MPs are considered a cargo for various molecules. 
Indeed, MPs carry proteins, RNA, micro-RNA, and DNA fragments 
from their cells of origin to other parts of the body via blood and other 
body fluids. Within last decade it has become to know that MPs would 
act as information transfer for target cells. However, the difference 
between innate mechanisms affected the release of MPs from stable 
cells, activated cells or apoptotic cells is yet not fully investigated and 
requires more studies.

The majority (more than 90%) of MPs in healthy controls are of 
platelet origin, whereas less than 10% originate from granulocytes and 
less than 5% from endothelial cells, red blood cells and monocytes 
[24]. Since all types of particles contain surface proteins derived from 
their cell of origin (including antigen-presenting cells), while there 
are additional biomarkers confirming origin of the MPs. The key 
features of several MP populations are reported in Table 1. Taking 
into consideration the difference between contents and umber of MPs 
various origin it has been suggested that signature of MPs might be 
used as potential biomarker of several disease, i.e. metabolic and CV 
disease including HF.

Biological Role and Function of MPs
Microparticles have great potentiality in material science-based 

applications [25], while initially they were recognized as cell debris 
beyond any biological function. Developments of technologies that 
attenuate recognize, determination, and measurements of MPs 
obtained from various cells appear to be indispensable tool to clinical 
medicine [26].

Recent investigations have been shown that MPs as derivate of 
cellular membrane are discussed powerful paracrine regulators of 
target cell functions [27-29]. Indeed, MPs possess a wide spectrum 
of biological effects on intercellular communication by transferring 
different molecules (autoantigens, cytokines, mRNA, iRNA, hormones, 
tissue coagulation factors, and surface receptors) able to modulate 
other cells affected growth of tissue, reparation, vasculogenesis, 
inflammation, apoptosis, infection, and malignancy. However, MPs 
are not only cargo for biological active substances. Growing evidence 
supports the idea that regarding association between immune pattern 
of MPs originated from different cells (endothelial cells, mononuclears, 
dendritic cells, platelets) and nature evolution of various diseases 
including CV diseases, cancer, sepsis, eclampsia, autoimmune and 
metabolic states, etc. [30-33].

Mononuclear cell-derived MPs are involved in inflammation, 
blood coagulation, and thrombosis [34,35]. Mononuclears may 
generate pro-inflammatory MPs upon activation and apoptosis with 
a calcium-dependent and p38 mitogen-activated protein kinase-
dependent mechanisms resulting in impact of cytokines, bacterial 
products, P-selectin, histamine, catecholamines, angiotensin-II, 
cigarette smoking [36-40]. Furthermore, mononuclear cell-derived 
MPs may appear spontaneously beyond obvious cause in physiological 
state [39,40]. 

Circulating mononuclear cell-derived MP like RBCs-derived 
MPs may provide an additional pro-coagulant phospholipid surface 
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enabling the assembly of the clotting enzymes complexes and 
thrombin generation [41,42]. It has noted the release or recruitment 
of pro-coagulant MPs at sites of endothelium injury or worsening of 
integrity through P-selectin pathway could be enhanced or triggered 
by tissue factor activity [43]. Converging evidences from experimental 
or clinical data highlight a role for MP harboring tissue factor in the 
initiation of disseminated intravascular coagulopathy.

Additionally, their role in the regulation of lipid metabolism 
through peroxisome proliferator-activated receptor-γ (PPAR-γ) is 
exerted. Moreover, some PPAR-γ agonists have been linked to an 
increased risk of thrombotic diseases [44]. Interestingly, angiotensin 
II may up-regulate the generation of pro-coagulant MPs by human 
mononuclear cells that confirms a hypothesis about linking between 
the renin-angiotensin systems to thrombosis [45]. Therefore, there is 
evidence that elderly persons compared with young persons may have 
different patterns of expression of mononuclear cells derived MPs and 
pro-coagulant activity in stable condition and diseases [46].

In is well known that MPs appear to be found into circulation 
in response to many situational changes (physiological conditions, 
stress, laminar shear stress on endothelium) micro-environmental 
stimulation, coagulation/thrombosis, endotoxinemia, activated cells or 
those undergoing apoptosis, ischemic injury, hypoxia, and malignancy 
[47-49]. Optionally, it is well known that several haemodynamic 
conditions via laminar shear stress may stimulate a secretion of MPs 
from endothelial cells. There are some controversial in understanding 
of regulation in MPs’ secretion. There are data that confirm a close 
link between high endothelial shear stress and release of MPs from 
endothelial cells [50]. In opposite, an inverse association between 
number of endothelial cell-derived MPs in circulation and shear stress 
values was found [51]. Authors have suggested that increased release 
MPs following apoptosis of endothelial cells may be trigger of low 
laminar stress. 

Thus, MPs depending on their origin, structure and inducers 
secretion might possess both physiological (cell-to-cell cooperation, 
regulation of endogenous reparation, angiogenesis) and pathological 
effects (promoting oxidative stress, vascular inflammation, coagulation, 
neovascularization).

Key mechanisms by which MPs may exert their biological functions 

on cells are shown Figure 1. Currently the role of MPs in pathogenesis 
of several diseases is elucidated and the numbers of studies devoted 
MPs-regulated processes in the CV diseases, rheumatic diseases, 
infections, are dramatically raised [51-54]. However, MPs play critical 
roles in almost all physiological events occurring in tissues and organs 
(Figure 2).

Because MPs formation and shedding involve reconstitution of cell 
membrane phospholipid structure, which contains pro-coagulant tissue 
factors, there is suggesting that MPs especially originating from RBCs 
may act ac inducers and regulators of coagulation. Indeed, erythrocytes 
actively shed phospholipid-bound MPs [54]. MPs originating from 
erythrocytes are naturally produced in vivo during normal aging 
processes or they have associated with a variety of pathophysiological 
conditions including hematology diseases (hemolysis, sickle cell disease 
and thalassemia), chronic kidney disease (IgA nephropathy), uremia, 
stroke, acute infections, sepsis, trauma, thrombosis/embolia, allograft 
dysfunction [55-60]. Therefore, erythrocytes-derived MPs may secrete 
ex vivo during cold storage of RBCs [61].

It has been defined that lipopolysaccharides, immune complexes, 
complement components, abnormal hemoglobin variants might lead to 
vesiculation, membrane instability, and loss of membrane asymmetry of 
erythrocytes with exposal of phosphatidylserine [55,56]. This potentiates 
thrombin generation resulting in activation of the coagulation 
cascade via the tenase and prothrombinase complexes responsible for 
subclinical phenotypes and increase of the atherothrombotic and CV 
risk [62]. However, there is serious controversial in understanding an 
ability of MPs derived from RBS, leukocytes, endothelial cells regulate 
coagulations cascade through generation of plasmin formation. 
Endothelial cell-derived and leukocyte-derived MPs provide the real 
support to plasminogen activator activity, whereas platelets-derived 
and RBCs-derived MPs do not contribute to the fibrinolytic activity 
of MPs isolated from peripheral blood [62]. Therefore, circulating 
erythrocyte-derived MPs exhibits procoagulant properties related to 
factor XI presentation on their surface [63]. Furthermore, complement 
activation on the RBCs leads to the shedding of erythrocytes-derived-
MPs that may express complement and tissue factor thus promoting 
inflammation and thrombosis [64]. On the other hand, erythrocytes-
derived MPs present fibrinolytic activity mainly due to the presence of 
plasminogen on them [65]. 

Types of MPs Markers Detection
Derived from resting or activated cells

Granulocytes CD24+CD11c− CD66b/CD66acde

Flow cytometry western blotting, mass spectrometry, electron 
microscopic technique, SPRi microscopy

Monocytes CD14
Microphages CD11b+ CD64+/− Ly6Clo

Endothelial cells CD144, CD62E
T cells CD4 or CD8
B cells CD20

Dendritic cells CD1a, CD14, CD141, CD80, CD85, CD86
ICAM(+) cells CD54
VCAM(+)cells CD106

Platelets CD41 and/or CD61

Erythrocytes CD235a, CD44, CD47, CD55, CFSE, annexin V and 
anti-glycophorin A

Derived from activated or tumor cells Annexin V binding, CD63, CD81, CD9, LAMP1 and 
TSG101 Flow cytometry, capture based assays

Derived from apoptotic cells Annexin V, DNA content, histones Flow cytometry

Abbreviations: ICAM: Intracellular Adhesion Molecule; VCAM: Vascular Cell Adhesion Molecule; SPRi Microscopy, Nano-particles-surface Plasmon Resonance-based 
Imaging Microscopy; CFSE: Carboxyfluorescein Diacetate Succinimidyl Ester.

Table 1: Key features of MP populations. 
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Koshiar RL et al. [66] concluded that the erythrocyte-derived MP 
surface is suitable for the anticoagulant reactions of the protein C 
system, which is important to balance the initiation and propagation 
of coagulation in vivo. Therefore, extracellular protein-bound RNAs 
(such as microRNA) derived from RBCs-MPs may play a role in 
transfusion-related immunomodulation [54].

The microvesicular bodies released from antigen presenting 
cells, tumor cells, and macrophages. The primary role of many 
microvesicular bodies is as an intermediate in a general degradative 
lysosomal pathway. These can transfer miRNA, proteins and lipids 
between cells and they could be involved in transcription, immune 
modulation and angiogenesis [67].

Platelet MPs are resulting in activation, stress, or apoptosis of 
platelets like several types of nucleus cells. Platelet MPs a phospholipid-
based structure and express in abundant functional receptors from 

platelet membranes, the pro-coagulant phosphatidylserine and 
probably complement. The main biological role of platelet-derived 
MP is regulating in hemostasis, thrombosis, cancer, and inflammation, 
however, they may act as promoters of tissue regeneration [68-71].

There is a large body of evidences regarding the role of platelet-
derived MPs a cargo tool of bioactive molecules (i.e. growth factors, 
other signaling molecules and micro-RNA), but they display mediating 
of the cellular environment with the vasculature and have an important 
vector function for the intercellular exchange of biological information 
[72].

Endothelial cells-derived MPs are released by inducer like 
angiotensin II, lipopolysaccharide, and hydrogen peroxide leading 
to the worsening of endothelial integrity, endothelial dysfunction, 
development and progression of microvascular inflammation [47]. All 
these processes relate to atherosclerosis, thrombosis, HF progression 

Figure 1: The key mechanisms of MP exertion on target cells.
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Figure 2: The role of microparticles in physiological events occurring in tissues and organs.
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and lead to major CV events. However, there are multiple physiological 
pathways for endothelial cells-derived MPs generation like NADPH 
oxidase derived endothelial ROS formation, Rho kinase pathway, and 
mitogen-activated protein kinases.

Increasing evidence suggests that endothelial cells-derived MPs 
play an important role in the pathogenesis of CV disease, acting as a 
marker of damage, either exacerbating disease progression or triggering 
a repair response. Indeed, endothelial cells-derived MPs depending on 
their origin (apoptotic cells or shedding from activated endothelial cell) 
might have a different structure and produce controversial effects. MPs 
derived from apoptotic endothelial cells are capable of transferring 
biological information (regulating peptides, active molecules, 
hormones) or even genetic materials (micro-RNA, mRNA, and DNA), 
as well as proteins, lipid components, from one cell to another without 
direct cell-to-cell contact to maintain cell homeostasis [73]. Apoptotic 
MPs secreted by endothelial cells may be not only immune mediators, 
generating powerful signaling by the simultaneous receptor interaction, 
but they are discussed a marker of endothelial cell injury, coagulation/
thrombosis and vascular aging [74]. Contrary, EMPs derived from 
activated endothelial cells did not contain nuclear components 
and they may exhibit angiogenic properties and contribute to tissue 
protection [75-77]. It has been suggested that an ability of various cells 
to secrete MPs may depend on epigenetic modifications and that this 
cell phenotype alteration by cell-derived vesicles presents a new aspect 
for consideration of HF development [78]. In this context, it has been 
suggested that numbers and phenotype of endothelial cells-derived 
MPs have the potential biomarkers of CV disease.

Microparticles in Cardiovascular Disease
Numbers of circulating MPs originated from several cells are 

changed in patients with known CV disease including HF. However, 
focus of investigations is found in the field of MPs derived from blood 
cells and endothelial cells [79,80]. Their increased level in plasma is 
regarded as a biomarker of alteration in vascular function, coagulation, 
neovascularization resulting in shear stress, inflammation, direct cell 
injury, endothelium cell activation or apoptosis, and probably activated 
vascular reparation [18,19,23,47]. Recent studies have been shown that 
elevated level of blood cells-derived MPs was higher in the patients 
with CV disease compared with healthy individuals [79-84]. However, 
the role of MPs originated from blood cells and endothelial cells in CV 
diseases sufficiently distinguishes. 

Erythrocytes-derived MPs

Although RBC-derived MPs are emerging entities found to play 
direct roles in coagulation, inflammation, and immunomodulation via 
interactions with other plasma cells, their role in the pathogenesis of 
CV disease including HF is not yet completed. There is evidence that 
erythrocyte-derived MPs are released from evolving growing thrombi 
into the distal perfusing blood in patients with acute myocardial 
infarction [85]. Therefore, elevated level of MPS originated from RBCs 
can be measured in peripheral blood. Investigators have concluded 
MPs derived from RBCs may constitute a novel systemic biomarker 
of ongoing thrombosis [85]. Probably, changes in the pattern of RBCs-
derived MP signature may associate with the developing of thrombo-
occlusive vascular process in the coronary arteries of acute myocardial 
infarction patients [86].

Sansone R et al. [87] have been investigated the pattern of circulating 
MPs originated from wide spectrum of cells, i.e. erythrocytes, 
leukocytes, endothelial cells, platelets, in end-stage HF subjects with 

implanting left ventricular assist devices. Authors reported that 
increased red and white cell MPs, as well as and endothelial cell-
derived MPs and platelet-derived MPs were observed in subjects 
implantation of left ventricular assist devices. However, the mechanical 
support leads to significant improvements in microvascular perfusion, 
hemodynamics and decrease the circulating level of MPs irrespective 
their origin. No any advantages in measurement of RBCs-derived MPs 
in end-stage HF subjects with implanting left ventricular assist devices 
were found. Empana JP et al. [88] reported that number of erythrocyte 
(CD235a+)-derived MPs in patients with sudden cardiac death due to 
acute coronary occlusion was not differ subjects with stable coronary 
artery disease. 

However, the abundant data indicate the causality role of elevated 
RBCs-derived MPs in C events resulting in hemoglobinopathies, blood 
transfer, and autoimmunity. Although the data confirming the role of 
RBCs-derived MPs in CV disease are very limited, quantification of 
MPs originated from RBCs may provide utility for identifying patients 
who are at increased risk of both thrombotic or CV events and would 
help to monitor response to therapy. 

Leukocyte-derived MPs

The leukocyte-derived MPs were found in higher concentrations in 
the patients with acute coronary syndrome and STEMI, asymptomatic 
atherosclerosis, obesity, diabetes, HF [89-91]. The monocyte CD14(+) 
MPs were implicated in the modulation of the post-acute coronary 
syndrome reparative response to injury [90]. Morel O. et al. (2009) 
[91] have been investigated the levels and cellular origins of MPs 
within the occluded coronary artery of patients with STEMI treated by 
primary angioplasty. It has reported that the levels of leukocyte-derived 
CD11a(+) MPs, endothelial cell-derived CD105(+) MPs, and tissue 
factor (TF)-bearing MPs were significantly higher within the occluded 
coronary artery than in peripheral blood samples received from the 
patients with acute myocardial infarction [91]. Authors found that 
restoration of the epicardial blood flow led to a significant reduction 
of pro-coagulant CD11a(+) and CD105(+) MPs (p<0.05). Likewise, all 
these findings might clarify that the elevation of pro-coagulant MPs 
within the occluded coronary artery of patients with STEMI suggests 
their pathophysiological role in coronary atherothrombosis.

Petrini S et al. (2016) [92] suggested that leptin playing a pivotal 
role in the pathogenesis of metabolically active obese, insulin resistance 
and diabetes mellitus may induce the shedding of pro-coagulant, 
tissue factor bearing MPs by peripheral blood mononuclear cells. 
Authors reported that leptin through increased intracellular calcium 
mobilization induced generation of pro-coagulant mononuclear cells-
derived MPs linking obesity and atherothrombotic risk. 

Overall, the leukocyte-derived MPs are considered a marker of cell 
injury, coagulation and inflammation. Whether MPs originate from 
stable and activated leukocytes are similar in their ability to damage of 
several tissue via direct and indirect mechanisms affecting interaction 
with other cells is not yet clear. 

Platelet-derived MPs

Platelet-derived MPs are defined in higher concentration in 
patients with acute coronary syndrome, myocardial infarction, 
heparin-induced thrombocytopenia, thrombotic thrombocytopenic 
purpura, hemolytic uremic syndrome, and other thrombotic disorders. 
Interestingly, the level of platelet-derived MPs was not increased 
in obesity, diabetes mellitus, insulin resistance, antiphospholipid 
syndrome, infection disease or sepsis [93]. Probably, this evidence 
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might relate to the mechanisms regarding release of MPs from 
platelets. It has suggested that in various cases circulating platelets are 
likely to adhere to leukocytes or endothelial cells at the activation site 
and that the circulating platelet-derived MPs are likely to be a residue 
of activated platelets [94]. 

Although the importance of platelet-derived MPs in the 
pathogenesis of CV diseases is still debated [93-96], there are data 
regarding directly effect of platelet-derived MPs on formation of 
foam cells in atherosclerotic plaque [97]. Therefore, increased level of 
circulating platelet-derived MPs was found in older age individuals 
without CV disease, as well as in the younger individuals with high CV 
risk due to subclinical atherosclerosis [96] and patients with known CV 
diseases [97]. However, the fractions of platelet-derived MPs expressed 
P-selectin or CD63 were higher in the patients with peripheral 
arterial disease and ST-segment elevation myocardial infarction [97] 
that confirmed the role of activated platelets-derived MPs in the 
pathogenesis of thrombus formation and platelet aggregations [98]. 
Moreover, beyond biomarkers of cell activation, platelets-derived 
MPs have functional effects on the development of damaged vessel 
wall-induced arterial thrombi and blood thrombogenicity on areas 
of arterial damage contributing to atherothrombotic events [99]. 
Michelsen et al. [100] have found the increased level of platelet-derived 
MPs in survivors of acute myocardial infarction correlated well with 
thrombosis and soluble CD40 ligand. Authors concluded that the 
independent association between large platelet-derived MPs and 
thrombin generation supports the concept that formation of platelet-
derived MPs is important for increased coagulation activation in acute 
myocardial infarction patients.

Interestingly, the platelet-derived MPs are discusses not only factor 
directly mediating endothelial dysfunction and atherosclerosis, but 
they contribute to vascular reparation following vascular injury acting 
via correspondence with endothelial progenitor cells [93]. Moreover, 
endothelial progenitor cells may consolidates their interaction with 
platelets under dynamic flow conditions through secretion of platelet-
derived MPs [97,99-102]. By now, it is known that platelet-derived 
MPs may interact with angiogenic early outgrowth cells in the context 
of vascular injury and modulate their regenerative potential [103]. Baj-
Krzyworzeka M et al. [104] reported that platelet-derived MPs may 
modulate biological functions of hematopoietic cells and that they 
play an important but as yet not fully understood role in intercellular 
cross-talk in hematopoiesis and regeneration. Ohtsuka M et al. [105] 
have shown that platelet-derived MPs were reported to augment the 
re-endothelialization capacity of circulating angiogenic cells. All these 
support the hypothesis regarding angiopoetic capability of platelets-
derived MPs [106]. 

Although the innate mechanisms regarding regulation of platelet-
derived MPs secretion and impact on target cells are not fully elucidated 
and required more investigations, increased content of platelet-derived 
MPs, even in normal blood conditions, may enhance vascular damage 
and thrombus formation. Finally, it is suggested that platelet-derived 
MPs may be considered a potential biological marker for vascular 
dysfunction and CV disease severity and may be implicated in the 
pathogenesis of coagulation abnormalities encountered in patients 
with known CV diseases and CV events.

Endothelial cells-derived MPs

The number of endothelial cells-derived MPs is widely considered 
a marker of endothelial dysfunction in CV diseases. Recent clinical 
studies have shown that numerous of CD31+/annexin V+ endothelial 

cells-derived MPs strongly correlate with endothelial function and 
CV outcomes in stable CAD patients [107,108]. Moreover, Huang 
et al. [109] reported that increased circulating CD31+/annexin V+ 
EMPs and decreased circulating EPCs predict target organ damage in 
hypertensive patients. The higher concentrations of endothelial-derived 
MPs have been found in patients with acute coronary syndrome, 
sudden cardiac death due to acute coronary occlusion and stable angina 
[89]. Moreover, number of endothelial-derived MP (CD42-CD31+) 
closely and inversaly relate to indexes of microvascular obstruction 
in acute myocardial infarction patients [110]. Yet, it has reported that 
patients with metabolic (obesity, metabolic syndrome and T2DM) 
and CV (stable coronary artery disease, asymptomatic atherosclerosis, 
acute coronary syndrome, myocardial infarction, hypertension, HF) 
may have impaired ratio between number of apoptotic endothelial 
cells-derived MPs and MPs derived from activated endothelial cells 
[101,111]. This imbalance was predominantly associated with increased 
number of MPs derived from apoptotic endothelial cells and labeled 
as CD31+/annexin V+, whereas number of activated endothelial cells-
derived MPs with the phenotype CD62E+ did not change or appeared 
to be tendency to decrease [112]. Indeed, elevated CD31+/annexin V+ 
to CD62E+ ratio was fond as indicator of impaired immune phenotype 
of endothelial cells-derived MPs, which allows determining pattern of 
MPs in CV disease patients [112]. This phenomenon was recognized 
as “impaired phenotype” of endothelial cells-derived MPs and it has 
related to cellular injury, inflammation, coagulation/thrombosis 
leading to vascular dysfunction and contributing to CV risk [111,113]. 
Finally, “impaired phenotype” of endothelial cells-derived MPs 
appearing as epigenetic reprogramming of mother’ cells play a pivotal 
role in the development of CV complications [113-115].

It has been suggested that not only endothelial cells that 
epigenetically transformed into “functionally incompetence cells” 
might produce wide spectrum of MPs, which may directly worse target 
cells. However, in HF patients the role of the endothelial cells-derived 
MPs is more profoundly investigated than MPs originated from other 
types of cells. 

Although there was a skepticism regarding origin of imbalance in 
several poles of endothelial cells-derived MP in patients with obesity 
and diabetes, it has supposed that inflammatory cytokine and probably 
lipid abnormalities may consider a possible cause of predominantly 
immune phenotype of endothelial cells-derived MPs [116]. The 
skepticism is based on findings regarding a pivotal role of increased 
glucose level, inflammatory cytokine and lipid abnormalities in the 
development of impaired phenotypes seen in CV disease patients. 
Indeed, glucose toxicity and lipid toxicity are recognized as main 
contributors of metabolic memory affected epigenetic reprogramming 
of various types of progenitor cells.

By now, endothelial progenitor cells have been found as 
component of endogenous repair system, which mediates tissue repair 
including microvasculature and microvasculature damages [117]. 
There are current available data regarding that the endothelial cells-
derived MPs interact with or enter different target cells from other 
tissues, altering their phenotype toward that of the cell releasing the 
vesicles [118,119]. Cells may be changed by direct interactions with 
microvesicles, transfer of cell surface receptors or directly epigenetic 
reprogramming via transcriptional regulators derived with circulating 
MPs [120,121]. Thus, endothelial cells-derived MPs are essential 
for cross-communication between cells and they may underlie the 
phenomenon of tissue reparation.

Additionally, the circulating endothelial cells-derived MPs are 
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involved in the cell-to-cell cooperation supporting mobbing and 
differentiation of the progenitor cells. Moreover, the dysfunction 
of progenitor cells has been recently described as an essential factor 
contributed to microvascular and microvascular complications in 
diabetes, metabolic syndrome and obesity. In this context, “impaired 
phenotype” of endothelial cells-derived MPs is a link between CV 
risk factors and epigenetic reprogrammed progenitor cells [118,122]. 
Indeed, pattern of endothelial cells-derived MPs in HF patients has 
associated with well-recognized metabolic risk factors (i.g. insulin 
resistance, inflammation, thyroid dysfunction) beyond metabolic 
syndrome or T2DM [123-125] and probably “impaired phenotype” of 
endothelial cells-derived MPs could be predictor of CV events and HF 
development in general population and in patients at higher risk of CV 
diseases.

Obviously HF patients might have different endothelial cells-
derived MP’ patterns contributing to the development of CV 
complications depending on the type of reprogramming of mother’ 
cells. Whether abnormal pattern of endothelial cells-derived MPs would 
be appeared prior to metabolic states manifestation or, in contrast, 
several metabolic states (i.e. diabetes, metabolic syndrome, obesity) are 
able to induce an imbalance between various endothelial cells-derived 
MPs via epigenetic reprogramming mechanisms affected matter’ cells 
secreting MPs is not still clear and requires more investigations. 

Diagnostic and Predictive Value of Circulating 
Microparticles in Heart Failure

Signature of circulating MPs reflecting various stage of pathogenesis 
of HF could be a biomarker of HF development and progression, as 
well as a predictor of different phenotypes of HF, clinical outcomes 
and survival rate [126]. Bank IE et al. [127] believe that both MPs-
counts and MPs-content are associated with CV disease. Probably 
the identification of plasma MPs is a novel source of blood-based 
biomarkers with the potential to improve diagnosis and prognosis of 
CV events including HF.

Several MPs are detecting in this context, whereas endothelial cells-
derived MPs appear to be more promised. The higher level of CD62+ 
MPs secreted from activated endothelial cells in the healthy subjects 
versus HF patients was related to rather endothelial dysfunction than 
endothelial cell injury [128]. We found that pattern of circulating 
endothelial cells-derived MPs in chronic HF patients has related to 
neurohumoral and inflammatory activation [129]. Moreover, we 
suggested that the patter recently described as “impaired phenotype” 
might have a predictive value in patients with HF irrespective HF 
phenotypes [130]. This phenomenon has defined as elevated levels of 
MPs derived from apoptotic endothelial cells and decreased level of 
CD62E+ MPs secreted by activated endothelial cells. We have been 
widely investigated this phenomenon in both HF phenotypes and in 
patients without known CV diseases and HF. Interestingly, that the 
results of our investigations have not exhibited any significance changes 
in CV comorbidities between HFrEF and HFpEF patients, probably 
due to similar molecular mechanisms that might lead to endothelial 
cell activation [131]. However, it has suggested that lack of sufficiently 
difference between co-morbidities’ presentation among HFrEF and 
HFpEF groups might express similar finding [132]. Interestingly, 
because of the number of existing CV risk factors is variable between HF 
patients, simple signature of MPs do not adequately describe vascular 
disease risk in all clinical conditions and, as such, the CV risk remains 
[121]. Indeed, elevated levels of circulating CD62e(+) endothelial cell-
derived MPs but not leukocytes-derived MPs in patients with cardiac 

dysfunction due to pulmonary hypertension prior to treatment are 
associated with adverse clinical events [132]. 

The concept of “impaired” phenotype as imbalance between factors 
originated endothelium with innate angiogenic and/or injury capacities 
directly contributed in the endothelial dysfunction and require further 
investigation because the molecular mechanism of their release into 
circulation still requires more elucidations [133]. Indeed, number of 
apoptotic MPs derived from endothelial cells alone and adjusted to 
number of mononuclear progenitor cells exhibited a higher predictive 
value for HF clinical outcomes than traditional biomarkers including 
NT-proBNP and galectin-3 [134]. Moreover, CD31+/annexin V+ 
endothelial cells-derived MPs to CD14+CD309+ cells ratio added to 
NT-proBNP, clinical data, and cardiovascular risk factors has exhibited 
the best discriminate value and higher reliability to predict HFpEF 
compared with NT-proBNP and clinical data/CV risk factors alone 
[131]. There were prompts to create novel predictive score based on 
measurement of circulating biomarkers including endothelial-derived 
MPs [135,136]. Thus, “impaired immune phenotype” of circulating 
endothelial-derived MPs became a novel biomarker of HF development 
and progression [137,138]. 

Conclusions
The interest of the scientific community in the role of MPs in 

HF development and progression has expanded rapidly over the 
last decades. MPs coordinate wide spectrum biological processes, 
i.e. angiogenesis, neovascularization, cell growth/differentiation, 
proliferation, coagulation, and they are involved in the epigenetic 
regulation of post-processing that is essential for phenotype 
modification, tissue repair, cell death, malignancy, and immunity. 
Numbers of circulating MPs derived from blood cells and endothelial 
cell, were found a marker of endothelial dysfunction and predictor 
of CV complications in dysmetabolic subjects including obesity and 
diabetes, as well as in individuals at higher risk of CV diseases and 
subjects with known CV disease including HF. Finally, using of MPs 
appears to be promised as diagnostic and predictive biomarker.
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