The Current Role of Bone Marrow Transplantation in the Treatment of Hemophilia A

Hassan Mansouritorghabeh1* and Ali Ghasemi2
1Allergy Research Center, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
2Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Corresponding author: Hassan Mansouritorghabeh, Allergy Research Center, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, Tel: +98-511-8012827; Fax: +98-511-8422544; E-mail: Mansouritorghabeh@mums.ac.ir

Received date: May 23, 2014, Accepted date: June 07, 2014, Published date: June 18, 2014

Copyright: © 2014 Mansouritorghabeh H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Bone marrow transplantation (BMT) is nowadays used in various hematological disorders including leukemias. Hemophilia A is X-linked bleeding disorder in which there are various genetic abnormalities in factor VIII gene. Among various hematological disorders, bleeding disorders mainly hemophilia in now widely treated using plasma derived and recombinant factor VIII concentrates. Day to day transfusion of coagulation factor VIII in current lifelong disorder is a burden for the patients and decreases their quality of life. Although infection of coagulation products with blood-borne viruses that was major concern in treatment of hemophilia has been eliminated nearly complete at the present time, but occurrence of factor VIII inhibitor is huge burden in treatment of hemophilia for both clinicians and patients. In this day and age BMT has gathered new insight and acceptable treatment for many hematological and non-hematological disorders. If BMT will be successful in treatment of hemophilia, it will improve quality of life (by nearly permanent treatment without necessary of daily treatment) and decrease mortality rate (by providing continuous coagulation factor level in blood system).

The aim of current review was to determine current role of BMT in treatment of hemophilia and to evaluate current usage of BMT for treatment of hemophilia. The review of literatures showed that although BMT has been used in a rare cases with hemophilia (mainly hemophilia with another blood disorder), it does not use commonly in treatment of patients with hemophilia A at present time. Literature review showed that scientists now focused on bone marrow transplantation in animal model of hemophilia.

Keywords: Hemophilia A; Treatment; Bone marrow transplantation

Introduction

Hemophilia A is X-linked bleeding disorder that mainly affects men. It affects 1 in 5000 males [1]. The current hemostasis defect originated from a deficiency or functional defect in factor VIII protein in circulation that terminated to inability to form blood clot and finally hemorrhage [2]. Occurrence of vast genetic abnormalities from single point mutation to complete deletion of factor VIII gene have been reported in hemophilia A [3]. These genetic abnormalities reflect in plasma level of factor VIII in affected patients. The severity of hemophilia correlates with plasma level of factor VIII (severe form <1%, moderate 1-5% and mild form 5-30%) [4]. The spectrum of clinical manifestation varies from mild ecchymosis to fatal spontaneous intracranial hemorrhagic episodes [5]. The hallmark of severe type of hemophilia is occurrence of massive bleeding that happen spontaneously or after minor trauma [6].

The main stone of treatment is replacement therapy using various factor VIII containing products including cryoprecipitate, plasma derived factor VIII concentrate, recombinant factor VIII and other products such as recombinant activated factor VII (rFVIIa), prothrombin complex concentrate, anti-fibrinolytic agents (Desmopressin and e-aminocaproic acid) and activated prothrombin complex concentrates [7,8]. Nowadays the common treatment option comprises infusion of plasma derived and recombinant factor VIII concentrates in many countries. The burden resulted of current treatment is the appearance of factor VIII inhibitor in plasma of the patients that makes the control process of hemorrhagic episodes unfruitful and challenging [2]. The life-expectancy in patients with hemophilia who have complete access to modern treatments has been improved and they now encounter age related diseases such as cancers [9].

Bone marrow transplantation (BMT) is an ideal cure for some cancers, inborn errors of metabolism or immune system [10]. New insights and attractions have been absorbed to novel therapeutic options including gene therapy and BMT to overcoming current problem using manipulation of hematopoietic stem cells [11]. The accessibility and capacity of ex vivo manipulation of hematopoietic stem cells have made them as an attractive target for treatment of hemophilia [12] while a multidisciplinary team work needs to manage the condition [10].

Here we will review contributions on efforts of bone marrow transplantation in treatment of hemophilia and will pay attention to role of BMT in treatment of hemophilia at present time.

Common Treatment Options

Cryoprecipitate

The first preparation was described widely and introduced by Dr. Pool in 1965. It was prepared using precipitation method from plasma...
desadvantages of current treatment are high cost; needing infusion
thrombogenesis. rFVIIIC has been licensed too. patients with hemophilia [25-27]. A commercially B domain deleted
doesn't increase risk of appearance of factor VIII inhibitor in untreated
life in circulation, efficacy and recover of rFVIIIC are similar with
change in factor VIII molecule during fractionation and purification

Desmopressin

It is synthetic analogue of vasopressin that is used in mild and
moderate hemophilia A and some subtypes of von Willebrand disease
(vWD) and can increase plasma level of factor VIII between 2-15 fold
of baseline in patients with mild and moderate hemophilia A [16,17].
Desmopressin is treatment of choice for part of patients with mild
and moderate hemophilia A and it is dependent to type of factor VIII
mutation, but not useful in treatment of severe hemophilia A, severe
hemophilia B and severe forms of vWD [18].

Plasma derived factor VIII concentrates (pdFVIIIC)

Several types of pdFVIIIC have been introduced commercially. The
intermediated-purity concentrates that are produced of large pools or
huge numbers of donors’ plasma have 2-5 units of factor VIII per
dozen. They are designed to be used for hemostatic purpose as
immediate stop of bleeding. The main advantage of pdFVIIIC is
low risk of hyperviscosity and pruritus. It was shown that pdFVIIIC
would reduce the number of dose of pdFVIIIC and avoid the use of
cryoprecipitate in the treatment of hemophilia A [19].

Recombinant factor VIII concentrates (rFVIIIC)

The gene of factor VIII sequenced, cloned and transfected in
mammalian cells to produce recombinant FVIII protein in 1984 by
Wood et al. [22]. Several types of rFVIIIC have been licensed and
introduced commercially. Several clinical trials have showed that half-
life in circulation, efficacy and recover of rFVIIIC are similar with
those of pdFVIIIC [23,24]. The freedom from risk of blood-borne
viruses’ transmission and independence to collecting numerous bags
of plasma is among hallmark advantageous of rFVIIIC. Also surveys
demonstrated that there are no immunological differences between
rFVIIIC and pdFVIIIC, so predisposing to recombinant concentrate
doesn’t increase risk of appearance of factor VIII inhibitor in untreated
patients with hemophilia [25-27]. A commercially B domain deleted
rFVIIIC has been licensed too.

Recombinant activated factor VII (rFVIIa)

It was demonstrated that rFVIIa can stable hemostasis in patients
with high titer of factor VIII inhibitor [28]. Owing to its interaction
with tissue factor and platelets, it can activate factor X and cause
thrombin burst without needing to factor VIII steps [29]. The
disadvantages of current treatment are high cost; needing infusion
under supervising of medical center due to higher dose of it can be
thrombogenesis.

BMT in mouse model of hemophilia A

The experiments on BMT in mouse model have been more
informative than other struggles. The surveys confirmed while
endothelial cells are potent source of factor VIII, transplanted bone
marrow does not generate endothelial cells and macrophages,
mesenchymal stromal cells and mononuclear derived cell from bone
marrow express factor VIII mRNA and make stable hemostasis in
mice [30,31].

BMT in canine model of hemophilia A

The experiments in some animal models have demonstrated that
transplantation of wild type hematopoietic stem cells did not
accompanying with hemostatic level of factor VIII in plasma with
unknown reason [32]. The factor VIII gene expressed in kidney and
liver tissue, while only after orthotopic liver transplantation and not
kidney transplantation correction of hemophilia appears [33, 34].
Groth et al. [35] showed that transplantation of lymphatic tissue can
be effective in hemophilic dog and these cells can produce factor VIII
protein after BMT.

The BMT in three dogs terminated to death of one dog due to
allograft-related complications or rejection of transplant in 34th day.
The factor VIII activity was measured as 5% by one stage method in
current dog. In the other dogs, one died due to occurrence of
hemorrhage at site of aspiration in 7th day and only one dog survived
healthy for about more than 2 years with about 8% factor VIII plasma
level [36,37].

BMT in patients with hemophilia A

At the best of our knowledge, BMT experiences in patients with
hemophilia A limited to four cases [10,38-40]. Allogenic BMT has
applied for two cases with concurrent diseases; the first one was a
hemophilic child with severe aplastic anemia who received HLA-
identical from his five year unaffected brother [38]. The second patient
was a hemophilia patient infected with HIV and concurrent Burkitt-
type acute lymphoblastic leukemia (ALL). He was transplanted using
of homoyzgous twin brother [39]. In none of them hematopoietic stem
cell transplant could create hemostatic level of factor VIII [37,39]. The
experience on BMT in current patients was done using 3.5x10^8
and 6.8x10^8 bone marrow cells/kg respectively and wasn’t informative
knowledge [30].

The third case was a patient with hemophilia and high titer of
inhibitor who underwent allogenic BMT in hope to induce immune
tolerance. He experienced several episodes of hemorrhage and severe
arthropathy [40]. The last case was a 12 year old boy with hemophilia
and extrosseous Ewing’s sarcoma that after treatment using standard
protocol and chemotherapy undergone auotologous hematopoietic
stem cell transplantation. He developed anplastic large cell
lymphoma (ALCL) and treated using standard protocol and
chemotherapy. To strengthen second remission allogenic BMT was
done for him. He survived with good clinical outcome for 3 year until
reporting and he upgraded from severe hemophilia to moderate
hemophilia A [10].

Conclusion

Until now, most informative surveys on treatment of hemophilia by
BMT have been on mice models and canine or human models have
not successful. In the body, hepatocytes and endothelial cells are two
main source of factor VIII production. As in hemophilia mice, BMT can correct hemophilia in most cases with regard to the other side of the coin that we know bone marrow transplanted cells cannot generate endothelial and hepatocytes cells [30]. We can conclude that mononuclear cells and mesenchymal cells release factor VIII in circulation. These findings offer importance of mesenchymal and mononuclear cells in correction of hemophilia mice and create a penetration to hope. Some researchers showed that bioengineered factor VIII transgenes and B lineage-specific factor VIII gene can correct mouse model of hemophilia [31,41].

It seems there is lingering way to establish BMT as a common treatment option for patients with hemophilia. Now we need to complete our knowledge and strength our ideas with investigation on animal models to find solutions toward setting BMT in hemophilia.

References


