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Abstract

This article aims to study the effect of non-uniform distribution of spontaneous curvature on shape transformation 
of two-phase vesicles via an evolutionary method. Their dynamic evolution is developed based on conventional 
Helfrich theory, considering bending of the membrane and friction in the surrounding fluid in each phase with variable 
spontaneous curvature. The variation of spontaneous curvature is assumed to be a function of arc length in each 
domain considering the effects of inducing factors (surrounding solution concentration and the membrane-protein 
interactions such as scaffolding and insertion). Membrane pearling from a large vesicle is simulated by the model and 
compared with the result of constant curvature and also with empirical observations. It can be shown that accurate 
simulation of some membrane deformation mechanisms depends on careful consideration of key factors such as 
the SC variations. In addition, the importance of different uniform and non-uniform distributions of spontaneous 
curvature is discussed with reference to specific cases.
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Introduction
Lipid bilayer membranes consist of polar molecules which are 

positioned across the membrane and any deflection in their normal 
arrangement requires a consumption of energy. These membranes 
are naturally symmetric and have no orientation. However, some 
factors like proteins can locally change the bilayer structure 
arrangement, resulting in curvature induction to the membrane 
[1]. The effects of spontaneous curvature (SC) on studying behavior 
of lipid membranes have been considered in many theoretical and 
experimental researches [2-4].

Although SC is considered as an invariable parameter in common 
known continuum models of vesicles [5,6], non-uniform distribution 
of curvature is a usual phenomenon [7,8]. Reference [9] presents 
an equilibrium model of a flat membrane with variable SC from the 
perspective of elastic shell theory. The effect of variable SC on local 
tension was also studied for a two-dimensional flat membrane [10]. 
An [11] equilibrium model is developed regarding variable curvature 
in which SC is considered as a function of polymer concentration 
gradient. Also in uniform vesicles, variable SC has been surveyed using 
local changes in molecular density [12]. The present study introduces 
an axisymmetric evolutionary model of two-phase vesicles with 
variable SC. Two-phase vesicles as examples of heterogeneous vesicles 
have a better efficiency to simulate closed membranes.

Several factors may cause SC in lipid membranes (for example, 
different molecular properties of the constituent membrane lipids, 
mechanisms by which proteins can generate membrane curvature 
such as scaffolding and insertion and local concentrations of adsorbing 
particles). Using the model, the effect of these mechanisms can be 
considered for more accurate simulation.

In the previous paper, the dynamic evolution of two-component 
vesicle has been developed using the equilibrium between the membrane 
bending potential and local fluid friction in each phase. Also, stationary 
and evolutionary methods were compared and stated that evolutionary 
method is a generalized form and evaluation criteria for related 
stationary/equilibrium model [13]. In this study, firstly equations 
dominating each phase of the membrane are presented considering 

variable SC. Then regarding the matching conditions of two domains, 
updated expressions of the membrane section reactions are introduced. 
Finally the model is described for some specific cases. By examining 
some examples of curvature distribution, the importance of this factor 
on shape transformation of vesicle membranes is highlighted. Next, 
a giant vesicle is simulated under the influence of protein insertion, 
with protein insertion into a small area of the membrane assumed to 
be a hyperbolic function with significant changing values and slope. 
In our results, budding and pearling processes are observed similar to 
experimental observations. We also show that it is not easy to simulate 
the pearling process with constant SC. 

Modeling
Evolutionary equation

The current study considers a lipid bilayer axisymmetric closed 
membrane consisting of two separate phase. r and θ are polar 
coordinates in the x-y plane and s represents the measured arc 
length from the south pole of the vesicle, z=0 (Figure 1). Assuming 
constant bending rigidity of the membrane, k the elastic free energy of 
the membrane, EB, is proportional to an integral of the square of the 
membrane curvature, 𝜏: [5]

2 21 ( ( ))
2BE k dA H C s

Γ
= −∫          (1)

In which 
sin2H h

r
ψ

= = ψ +  indicates total curvature and ( )C s
represents SC of the membrane. Variable SC is considered as a function 
of geometry and arc length that can be specified by different methods 
such as experimental data or molecular dynamics [2-4].
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The evolutionary model of the membrane is presented for a 
two-phase vesicle based on a local equilibrium between the bending 
potential force of the membrane and fluid friction [13]:

BEkv P Hδ
= − − + τ

δΓ
  (2)

Assuming variable SC and ( )'( ) dC s
ds

= .:
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In which v  and ' cosK
r
ψ

= ψ denotes membrane normal velocity 
and Gaussian curvature, respectively. Lagrange multipliers P and 𝜏 are 
used for imposing constraints of volume and area on the evolutionary 
equation. Parameter P reveals the difference between interior and 
exterior pressure of the membrane, (i) represents the negative value 
of surface tension in each domain of the two-phase vesicle. Finally, 
differential equations dominating in each phase are as below:
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Two helpful dimensionless parameters to describe the vesicles 

configuration are the area fraction of each phase ( )
2
0

( )
4

i A ix
R

=
π

, and the 

reduced volume, 3
0

4/ ( )
3

v V Rπ
= , such that  stands for radius of a 

sphere whose surface area is equivalent to the total area of the vesicle 
phases (1) (2) 2

0( 4 )A A R+ = π .

Matching conditions

Assuring equilibrium of phases requires determination of 
conditions at the matching area between phases. According to the 
method presented by Baumgart [14], we must set matching conditions: 

cos 0s s
s sT T

r
− + ψ
− −σ = 				                (5)

sin 0s sQ Q
r

+ − ψ
− −σ =    (6)

0s s
s sM M+ −− =   (7)

In which, S
ST , SQ  and S

SM  indicate lateral tension stress, transverse 
shear and bending moment correspondingly in each phase. Regarding 
variable SC, they are presented as below: 
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( ) sin(s)s
s GM k H C k

r
ψ

= − +               (10)

Signs of - and + represnt just before and after the matching 
boundary. Numerical solution of the differential equations was 
carried out by developing calculation code in MATLAB and using 
bvp4s solver. For more information about the method of model 
solution see [13].

Curvature distribution function

In the current article, curvature distribution is studied by 
combinations of tanh functions which help to determine step changes 
with low or high slope. The function of dimensionless SC, ( ) ( )

0
ˆ i iC C R=

, is as follows: 

( )( )ˆ 1 tanh( )iC A aS b c= − − π +    (11)

This function is used as an appropriate presentation for strong 
conversion of protein density from a constant value to zero between 
surfaces covered and uncovered by protein [15]. For constant values 
of curvature, A, the occupied surface is defined using as a parameter 
the central angle, S, in an equivalent sphere. S denotes the central 
angle variable and corresponds to the arc length, s; their relationship is 

described as 
sinds S

dS r
= . In each phase, S∈[0,π], so that S1(s0)=S2(s2)=0 

corresponds to the pole of that phase and at the matching boundary of 
phases S1(sb)=S2(sb)=Π.

Numerical Results and Discussion
Importance of curvature distribution 

In the following, the effect of SC distribution on shape 
transformation of vesicle membranes is compared. Surveying these 
cases reveals that the different distributions of SC have notable effects 
on the final shape of the vesicle.

In Figures 2 and 3, curvature distribution function in phase 2 is 
presented beside each case (left figure in each case). Furthermore, the 
amount of SC in phase 2 is displayed schematically as a dotted line at 
each point of the surface perpendicular to the membrane above the 
initial configuration of the vesicle (middle figure in each case). In this 
depiction, for outward curvature the value supposed to be positive. As 
the dotted line gets further from the surface, the SC value is greater. 
The last shape on the left is the final vesicle form obtained from the 
simulation.

The comparison of different gradients of SC distribution and 
constant SC, as examples, is shown in Figure 2. Curvature gradient size 
reflects curvature inducer concentration on the membrane surface. 
Initial conditions are assumed to relate to an oblate vesicle with x(1)=0.75 
and ( )ˆ 0iC = . SC of phase 2 has a constant value (2)ˆ 0.4C =  (Figure 
2d). The parameter a reveals the slope of the curvature changes with 
geometry which is equal to 1, 3 and 5, from Figure 2a-2c respectively. 
Except in Figure 2d, about half of the phase 2 is under the influence of 
SC, meaning that b=a/2.

Figure 1: Coordination of r and z in definition of axisymmetric geometry 
along with the position of orthonormal basis in each point of surface which 
are defined in index b refers to the boundary.
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In Figure 2a, a relatively moderate change in curvature makes phase 
1 in the vicinity of the boundary to have more positive curvature, under 
the influence of the phase 2 SC. But in Figure 2c and 2d there is a step 
change in SC distribution, not an induced membrane curvature close to 
the domain boundary, and therefore there is not a significant positive 
curvature in this area. The vesicle shape under the effect of variable SC 
is dissimilar to that observed with a uniform SC. These differences can 
be seen in overall shape and also details of vesicle structure (such as the 
neck geometry). 

In Figure 2a, under the influence of the phase 2 SC, phase 1 in the 
vicinity of the boundary is impressed by a positive curvature. But in 
Figure 2b and 2c there is a step change in SC distribution of phase 2 
which does not induce any curvature in the membrane close to the 
domain boundary. Since the phase 1 SC is zero, ( ( )ˆ 0iC = ), thus, there 
is not a significant positive curvature in the phase 1 near the boundary. 
The vesicle shape under the effect of variable SC is dissimilar to the 
one observed with a uniform SC. These differences can be seen in 
overall shape and also in details of vesicle structure (such as the neck 
geometry) (Figure 3).

In another example, the different bending stiffness is considered 
( (2) (1)4k k= ) (Figure 4). The curvature signs are opposite in the 
domains and the negative SC is uniformly distributed in the phase 2 (

(2)ˆ 3C = − ). The SC of the phase 1 is positive and the affected region 
of this phase by the SC is gradually increased, from Figure 4a-4d 
respectively. As can be seen, if the spontaneous curvature of phase 1 
is over than 0.75 of the phase 1 area, it would be possible to fission of a 
single-phase vesicle from the complete bud.

Shape transformation depends on the occupied area with a given 
SC, as investigated in Figure 3. It is assumed that x(1)=0.50, (1)ˆ 0C =
and a non-uniform SC is considered only in phase 2. In these examples, 
for the specified curvature value and gradient, A=6 and a=4, and the 
fraction of the phase 2 area which covered with SC, is 0.25, 0.50 and 
0.75 from Figure 3a-3c, respectively. When SC is extended over less 
than half of Phase 2, the vesicle obtains a dumbbell form; but with a 
wider curvature distribution the vesicle shape is more nearly spherical. 
Applying constant curvature, the vesicle experiences local deformation 
only at the domain boundary (Figure 3d). Regarding the zero SC in 
phase 1, in the border phases the membrane shape follows the curvature 
of phase 2. Evaluating these figures we find that to achieve the correct 
solution in any transformation process requires accurate modeling of 
the curvature inducing factor.

Pearling

A pearling phenomenon is one of the vesicle configurations that 
occur due to SC [16]. Polymers can change the lipid bilayer local SC 
by permeation and anchorage on the membrane leading to significant 
shape transformations in the vesicle [17-19]. Using the model presented 
here, we simulated pearling of a giant vesicle’s membrane. The initial 
vesicle shape seems to be an oblate lipid vesicle and area fraction 
parameter of the phase 1 is equal to x(1)=0.98. Physical characteristics of 
the vesicle membrane are assumed to be uniform in total surface and 
the bending rigidity of two phases are equal. It is assumed that polymer 
permeation through the membrane makes for a strong curvature in 
a small area fraction (about 2%) and that the surrounding areas are 
narrowly affected by curvature induction. Accordingly, curvature 
distribution in 2 phases is considered as follows:

( )(1)
1

ˆ 2 1 tanh(5 5 ) 5C S= − − − π + 		                  (12)

( )(2)
2

ˆ 2 1 tanh(5 5 ) 4C S= − − π + 		                  (13)

Figure 2: The effect of variable SC with different gradients. In all cases 
x^((1))=0.75 and C ̂^((1))=0. a) A=0.2, a=1, b=0.5, c=0, b) A=0.2, a=3, 
b=1.5, c=0, c) A=0.2, a=5, b=2.5, c=0 d) C ̂^((2))=0.4.

Figure 3: Different distribution of SC with diverse surface coverage. In all 
cases x^((1))=0.50 and C ̂^((1))=0. a) A=3, a=4, b=1, c=0, a) A=3, a=4, b=2, 
c=0, c) A=3, a=4, b=3, c=0 d) C ̂^((2))=6.
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Figure 5a shows curvature distribution in phases in two ways: 
curvature changing in each phase, (i)ˆ ( )iC S , for a central angle of 
0 iS≤ ≤ π , and schematic comparative representation of curvature 
distribution in which the curvature value of each point on the 
membrane surface is shown as a vertical distance from the membrane. 

The result of the local shape transformation simulation of a giant 
vesicle in budding, tubulation and pearling stages is displayed in Figure 
5b. The same stages in pearling have also been observed experimentally, 
as reported by others [16]: an oblate initial shape for the giant vesicle, 
bud-tube shapes developed on the vesicle surface, and finally pearling 
of the membrane. The results from these experimental data and 
our simulation are in good conformity with each other. In various 
simulations that have been done with different values of SC, it reveals 
that the stronger the SC, the more the process of shape transformation 
makes progress from budding to pearling. This phenomenon is 
mentioned in Ref. [17] as well.

Based on the definition of mean curvature (
1 2

1 1H
R R

= + ) and 

regarding the equation for a membrane’s bending energy (1), for 

developing cylinder with radius of 01/CR C= , and connected 
spheres (like the beads of necklace) (Figure 6) with radius of Rs=2/
C0, it consumes no energy if SC is 0C . Due to the diversity between 

the radius of the cylindrical tube and spheroid pearls, the geometry 
should be transformed smoothly. This conversion takes place with an 
intermediate shape that is called unduloid and converts the tube radius 
to the sphere radius or to zero (in the connectivity region) [19]. All of 
these three shapes have been observed in the simulation (Figure 5). It 
should be noted that in the last state, mean curvature of spheres has 
increased by about 50% from the curvature of cylindrical tube area 
leading to a reduction of approximately 30% in radius. It shows that 
the induced curvature in cylindrical tube is not proportional to level 
of membrane’s energy resulting from applying SC, and for increasing 
curvature, the membrane inclined to spherical shape. In this regard, 
it is necessary to point to similarity of the curvature of vesicle’s main 
body which has an almost constant level of energy during the process 
[20,21].

Because of similarity of SC values in corresponding phases, the effect 
of variable or fixed SC can be observed through comparing Figures 5 
and 7. In Figure 7a, SC is assumed to be constantly distributed in two 
phases and its value is (1)ˆ 1C =  and (2)ˆ 8C = . Due to the significant 
difference between the two phases, shape transformation is limited to 
phase 2 and because of the lack of a shape transformation in phase 1, 
only a bud is developed in phase 2, which becomes gradually smaller 
(Figure 7b). The difference of between the conditions giving rise to 
Figures 5 and 7 is the curvature value in the vicinity of the phase’s 
border. As mentioned before (Figure 5a), the curvature of phases come 
close to each other gradually at their border. For this reason, as SC 
increases at the vicinity of the border in phase 1 along with budding in 
phase 2, shape transformation in phase 2 leads to transformation of a 
bud to a tube and then to pearled sphere.

Conclusions
Due to various mechanisms of inducing SC in membranes, 

nearing real-life conditions for this parameter, for example non-
uniform distribution, can make for a better understanding of the 
subject. In the current study, a model of a two-phase vesicle with 
varying distribution of SC is developed which relies on conventional Figure 4: The effect of variable SC in two-component vesicle with k(2)=4k(1). In 

all cases x(1)=0.50 and C(2)=-3. a) A=2, a=4, b=1, c=0, b) A=2, a=4, b=2, c=0, c) 
A=2, a=4, b=3, c=0, d) C(1)=4.

Figure 5: a) Curvature distribution in C(S)-S plane (left) and schematic 
curvature distribution in each phase perpendicular to the membrane (right 
C(1)=-2(1-tanh(5S1-5Π))+5, C(2)=2(1-tanh(5S2-5Π))+4. b- Simulating polymer 
permeation through the membrane and developing bud-tube shape and 
pearled spheres (from left to right).
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continuum theory of lipid membranes. Non-uniform SC is considered 
as a function of arc length in each phase. In this way, the effect of 
different origins of SC like type and distribution of proteins and 
changes in solution density can be introduced in the model vesicle. 
Regarding each SC mechanism, a function can be introduced to 
represent the curvature distribution that considers the properties of 
the mechanism by determination of magnitude, gradient and affected 
area. As previously stated, the curvature distribution of a mechanism 
(protein, concentration, etc.), is the required input which can be 
calculated using laboratory test or molecular dynamics calculation. 
However, the challenge of this method is defining the curvature 
distribution which needs to be characterized either by molecular 
calculation or experiment. The shape transformation of a giant vesicle 
introduced by SC in two phases, and the simulation of bud, tube and 
pearl-shaped sphere are simulated by this model. It has also been 
shown that constant values and variable distributions of SC affect the 
final shape of a vesicle.
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