The Expression of DNA Methyltransferase DNMT3a in Classical and Fibrolamellar Hepatocellular Carcinoma

Szparecki G¹, Ilczuk T¹, Wolosz D¹, Otto W², Gornicka B³ and Wołinska E¹

¹Department of Pathology, Medical University of Warsaw, Poland
²Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Poland

Received date: June 06, 2016; Accepted date: June 29, 2016; Published date: June 30, 2016

Copyright: © 2016 Szparecki G, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The epigenetic regulation of DNA-templated processes has been studied extensively during the last 15 years. As was revealed, DNA modification such as methylation possess great impact on cell fate and can result in abnormal protein expression patterns what can lead to the induction of carcinogenesis. DNA (cytosine-5)-methyltransferases are enzymes that catalyses the transfer of methyl groups to specific CpG structures in DNA. The methylation of these sequences can lead to inappropriate gene expression such as the silencing of tumor suppressor genes in cancer cells. DNA (cytosine-5)-methyltransferase 3A (DNMT3a) gene encodes a DNA methyltransferase that is thought to function mainly in de novo methylation. In the normal liver DNMT3a is usually expressed on the medium level, as was described in literature. Hepatocellular carcinoma (HCC) still remains one of the most common cause of death among patients with cancer. Fibrolamellar hepatocellular carcinoma (FL) represents rare subtype, which affects usually young people (an onset between 20-30 years) and its etiology is poorly understood. In our study we compared the presence of DNMT3a protein between two different types of HCC-common type and fibrolamellar one. We performed immunohistochemical staining of formalin fixed paraffin embedded tissue sections obtained from 30 patients (22 HCC and 8 FL). We found that DNMT3a immunoreactivity is significantly more pronounced in the non-fibrolamellar variant of HCC than in the fibrolamellar one. The DNMT3a immunoreactivity was predominantly localized in cancer cell nuclei in a form of separate large granules spotted in proximity to heterochromatin region. The reduced presence of DNMT3a in the fibrolamellar variant of HCC may suggest that different epigenetic mechanisms are involved in development of this particular type of liver cancer. Improving our understanding of the roles of DNMT proteins in hepatocarcinogenesis can benefit in the development of epigenetic –based therapy designed for specific HCC subtype.

Keywords: DNMT3a; Methyltransferase; Hepatocellular carcinoma; Fibrolamellar carcinoma

Introduction

The epigenetic regulation of DNA-templated processes, such as transcription, replication or DNA repair has been studied extensively during the last 15 years. This discovery brought a significant alteration of the so-called central dogma of molecular biology, as far as the sequence of the DNA bases is no longer considered to be the sole determining factor of gene expression.

As was revealed, DNA modification such as methylation, or histone acetylation possess great impact on cell fate and can result in abnormal protein expression patterns what can lead to the induction of carcinogenesis. Furthermore, the role of epigenetic changes in genome has been discovered in such processes as regulation of metabolism, cell differentiation, tissue regeneration, memory processes, individual difference in immunological responses to infection [1]. The spectrum of diseases, in which dysregulation of epigenetic processes occurs is equally wide: it includes, apart from cancer, autoimmunological diseases (e.g. rheumatoid arthritis, multiple sclerosis, diabetes type 1), neurodegenerative disorders, not to mention hereditary syndromes associated with parental or maternal methylation of specific loci (Silver-Russell syndrome, Beckwith-Wiedemann syndrome, Angelman syndrome, Prader-Willi syndrome) [2].

DNA (cytosine-5)-methyltransferases are enzymes that catalyse the transfer of methyl groups to specific CpG structures in DNA. The methylation of these sequences can lead to inappropriate gene silencing, such as the silencing of tumour suppressor genes in cancer cells. The demethylation of repeated DNA sequences has also been researched in tumours. In the former group the following demethylated genes have the greatest clinical importance: HOX1 in T-cell acute lymphoblastic leukaemia, MAGE gene family in melanoma and DMR-LIT1 in esophageal cancer [3]. The loss of methylation occurs chiefly in CpG groups localised mainly in promoters, however demethylation sites in exons and introns have also been observed [3]. The repeated DNA sequences which are subject to demethylation include LINE-1 and HERV-K. The role of this process in carcinogenesis was not clearly elucidated, it is supposed that hypomethylated LTRs demonstrate higher frequency of homologous recombination and thus lead to chromosome rearrangements and genome instability [4].

On the other hand, the loss of methylation in proto-oncogenes, described as active demethylation and mediated by TET1 and TET2 proteins might augment their expression and form the initial steps in carcinogenesis [5].

The family of mammalian methyltransferases consists of five enzymes, of which three possess enzymatic activity for DNA methylation - the remaining member of the group, DNMT2 plays an...

Materials and Methods

Tumor samples

We performed our study on 20 common type, 5 fibrolamellar hepatocellular carcinomas and 11 non-malignant liver tissues.

Immunohistochemistry (IHC)

Formalin fixed paraffin embedded sections were subjected to peroxidase-based antigen immunodetection with the anti-\(DNMT3a\) (Atlas Antibodies, USA) antibody. Immunostaining was performed using Leica BOND Automated Immunostainer (Leica Biosystems, Germany).

Real-time PCR

In two experimental groups (normal liver and non-fibrolamellar HCC) \(DNMT3a\) expression was evaluated by RT-qPCR. RNA was isolated using Direct-zol™ RNA MiniPrep (ZymoResearch, USA). Gene expression analysis was performed using Taq Man Gene Expression Assay (Invitrogen), on AbiPrism 7500 (Applied Bioststems, USA) system. Molecular probes complementary to mRNA sequences of all the genes were purchased from Invitrogen (USA), stained by the manufacturer with FAM as a fluorophore and TAMRA as a quencher. \(GAPDH\) was selected as the reference gene. Expression levels were counted using 2-DDCt method and estimated as a fraction of reference gene expression.

Data analysis

The immunoreactivity was quantified by the assessment of the percentage of immunopositive cells counted in 5 representative high power fields (HPF). Since our data did not follow normal distribution as assessed in Liljefors test, non-parametric method was applied. Results were subjected to Mann-Whitney U-test. p levels <0.05 were deemed statistically significant.

Results

Immunohistochemical analysis revealed no immunostaining of \(DNMT3a\) in the non-neoplastic liver (Figure 1). In some hepatocytes weak cytoplasmic staining was observed. The analysis in cancer group has shown \(DNMT3a\) immunoreactivity to be predominantly localized in cancer cell nuclei in a form of separate large granules spotted in proximity to heterochromatin region (Figure 1).

Objectives

The aim of the study was to assess the presence of \(DNMT3a\) protein in two different types of hepatocellular carcinoma - common type and fibrolamellar one, as well as in the normal liver both in quantitative and qualitative (intracellular localisation) terms using immunohistochemistry. Furthermore we analysed the mRNA levels of \(DNMT3a\) in HCC and in the normal liver.
immunostaining was detected between normal liver and HCC tissue (Mann-Whitney U test) (Figure 2).

Although there was no quantitative expression in HCC group and in the normal liver. Similarly, gene expression analysis revealed no statistically significant difference between non-neoplastic liver and HCC group (B; p>0.05 Mann-Whitney U test) (Figure 2).

We found DMT3a immunoreactivity to be more abundantly expressed in non-fibrolamellar variant of HCC than in fibrolamellar hepatocellular carcinoma (U=10.5, p=0.0177; Mann-Whitney U test) (Figure 2).

Non-statistically significant difference in the intensity of immunostaining was detected between normal liver and HCC tissue sections. Similarly, gene expression analysis revealed no statistically significant difference between normal liver and HCC group (B; p>0.05 Mann-Whitney U test) (Figure 2).

Discussion

In our study we managed to confirm the previously proposed role of DNMT3a methyltransferase in pathogenesis of hepatocellular carcinoma. Although there was no quantitative difference between intensity of immunohistochemical reaction between non-neoplastic liver and HCC group as far as a whole of the cell is taken into account, the localization appears to be crucial for our results. DNMT3a can unfold its enzymatic activity with all its carcinogenic consequences in nucleus only, and that was indeed the localization of the protein in HCC tissues. On the other hand, the presence of DNMT3a in cytoplasm can have no influence on methylation status of the chromatin, therefore the cytoplasmic staining in non-neoplastic liver, although nearly identical in intensity to nucleiic immunochemistry reaction in cancer, has indeed dramatically different biological significance.

This fact might be explained in terms of gene expression: although both HCC cells and normal hepatocytes produce DNMT3a mRNA in amounts that showed no significant difference in our study, the mRNA translation might be different or (and that is the explanation we find most probable) the cellular distribution, especially transport from cytoplasm into nucleus might be a crucial factor determining the biological activity on DNA of DNMT3a and explaining the differences in localisation.

However, the novel aspect of our study consisted chiefly in taking into account the fibrolamellar variant of HCC. In this case, it appeared that DNMT3a expression was significantly lower than in non-fibrolamellar variant of HCC. This finding is consistent with the observation that HBV, one of the most important risk factors globally for non-fibrolamellar type HCC, but not for FL induces DNMT3a expression [12]. Unfortunately, this difference could not be pin-point in terms of mRNA transcription due to lack of necessary fresh material with non-degraded RNA resulting from relative rarity of FL variant. Nonetheless this could be a promising direction for further research.

The relatively lesser role played by DNMT3a in progression of FL variant than in common type HCC elucidated in our study is a promising field for further analysis. First, it is clear than completely different molecular ethiopathogenesis of this specific variant extends to its epigenetic characteristics as well. Although, as noted in the introduction, DNMT3a is considered to be the main DNA methyltransferase involved in carcinogenesis of many tumours, it could not be ruled out that other enzymes of this family (DNMT3b and/or DNMT1) could have its say in FL variant. It has already been proved that DNMT1 and DNMT3a methylate preferentially different loci of the genome [15]. Thus it would not be surprising, if the lack of DNMT3a expression in terms of carcinogenesis could be replaced with DNMT1 overexpression leading to another outcome as far as diagnosis is concerned, i.e. progression to FL variant instead of common type HCC.

Our results suggest that an epigenetic DNA regulator, DNMT3a may have profound influence on hepatocarcinogenetic process. Taking into account the reduced presence of DNMT3a in the fibrolamellar variant of hepatocellular carcinoma it would be interesting to define if different epigenetic mechanisms are involved in this particular type of the liver cancer development. Improving our understanding of the roles of DNMT proteins in hepatocarcinogenesis can benefit in the development of epigenetic-based therapy designed for specific HCC subtype.

References

