alexa The Forgotten Remit of Astrobiology | OMICS International
ISSN: 2332-2519
Journal of Astrobiology & Outreach
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

The Forgotten Remit of Astrobiology

Chandra Wickramasinghe*
Buckingham Centre for Astrobiology, University of Buckingham, Buckingham, UK
Corresponding Author : Chandra Wickramasinghe
Buckingham Centre for Astrobiology
University of Buckingham
Buckingham, UK
Tel: 44-777-38-9243
E-mail: [email protected]
Received June 18, 2014; Accepted June 20, 2014; Published June 22, 2014
Citation: Wickramasinghe C (2014) The Forgotten Remit of Astrobiology. Astrobiol Outreach 2:e105. doi:10.4172/2332-2519.1000e105
Copyright: © 2014 Wickramasinghe C. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Visit for more related articles at Journal of Astrobiology & Outreach


Astrobiology as it is currently pursued generally ignores the possibility that life might be a cosmic phenomenon, and that fully-fledged microbial life – bacteria and viruses – are cosmically omnipresent. The exploration of this possibility, which is opposed to the conventional view of an origin of life occurring independently on individual planets like Earth, is urgently needed in the light of new data.

Astrobiology; Panspermia; Life as a cosmic phenomenon; Fred hoyle
From the mid-1970’s onwards the present author and the late Sir Fred Hoyle argued that spectroscopic evidence existed for the widespread occurrence of organic molecules and biomolecules throughout the interstellar medium of the galaxy [1-5]. Although our claims were refuted at the time it is now conceded without dissent that such molecules exist everywhere [6,7]. But how are these molecules formed? And what, if any, is their connection with life. The consensus, is that these molecules form inorganically and represent the precursors of biology. When prebiotic molecules are delivered to planets like the Earth via comets and meteorites [7] an origin of life takes place in the manner originally proposed by Oparin and Haldane [8].
Despite several decades of intense effort in the laboratory the Oparin-Haldane process – the primordial soup theory - has not been convincingly proved [9]. The alternative possibility is that fully-fledged microbial life exists on a galactic scale and that the astronomically observed molecules are mostly the detritus of biology. This latter possibility is not considered by mainstream astrobiology because it is seen to fly in the face of orthodoxy.
The earliest astronomical evidence supporting this stronger and more daring possibility was the infrared spectrum of the galactic centre infrared source GC-IRS7, as well as the extinction curve of starlight which together pointed to biology on a cosmic scale [10,11]. The implication of the model fits of the type shown in Figure 1 is that some 20% or more of the mass of carbon in interstellar space is tied up in the form of particles that are spectroscopically indistinguishable from freeze-dried bacteria, viruses and their degradation products [12-14].
It was such astronomical evidence combined with the lack of progress towards understanding the origin of life at the molecular level that first prompted the exploration of life as a cosmic phenomenon. The improbabilities associated with the origin of life are then safely tucked away in an early stage in the evolution of the Big-Bang Universe [13] – or, life was ever present in a universe with an open timescale [14]. In a lecture entitled “The relation of biology to astronomy” delivered at an out-of-town meeting of the Royal Astronomical Society in Cardiff on 15th April 1980, Fred Hoyle concluded thus: “Microbiology may be said to have had its beginnings in the nineteen-forties. A new world of the most astonishing complexity began then to be revealed. In retrospect I find it remarkable that microbiologists did not at once recognize that the world into which they had penetrated had of necessity to be of cosmic order. 1 suspect that the cosmic quality of microbiology will seem as obvious to future generations as the Sun being the center of the solar system seems obvious to the present generation”.
This lecture was essentially an unofficial launch of the new subject of astrobiology some years in advance of its formal recognition as a new scientific discipline. Modern explorations of astrobiology have been mainly concerned with studying the extreme survival properties of bacteria that make them fit for space travel, and also with locating suitable astronomical habitats for life within the solar system and beyond. The implicit premise, which is unproven, is that given the appropriate physical and chemical condition life must originate inevitably in the manner of the Oparin-Haldane model. The stronger possibility that fully-fledged microbial life is omnipresent, as implied in the above quotation and in Figure 1, is rarely discussed let alone explored.
The original evidence from astronomy for the theory of cosmic life [12-14] has subsequently been backed up by studies of meteorites and cometary dust. Studies of meteorites by Pflug in the 1980’s that revealed the unequivocal presence of fossilized bacteria and viruses [15] have been supported by a recent study of a meteorite that fell in Sri Lanka in December 2012. Examination of this meteorite by Jamie Wallis and colleagues leaves little room to doubt that fossilized microbiological entities including the highly characteristic morphologies of diatoms are present [16]. Some of these structures are reproduced in Figure 2. Critics who have argued that the stones in question could not be meteorites (presumably because they contain life) would have to explain many facts that militate against their terrestrial origin. Witness reports of a fireball sighting that preceded the fall, non-terrestrial ratios of the stable oxygen isotopes, high abundances of the element iridium are just a few. Another recent piece of evidence of a similar kind was obtained by Milton Wainwright and his colleagues [17,18] showing biological entities in cometary meteoroids collected from 27 km in the stratosphere. All  this shows clearly that it may be unwise to continue ignoring the concept of life being a cosmic phenomenon. Extending the remit of astrobiology to include an examination of this possibility is certainly long overdue.


Figures at a glance

image   image
Figure 1   Figure 2
Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Article Usage

  • Total views: 12271
  • [From(publication date):
    July-2014 - Aug 19, 2018]
  • Breakdown by view type
  • HTML page views : 8401
  • PDF downloads : 3870

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A


[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


porn sex

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

Gaziantep Escort

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A


[email protected]

1-702-714-7001Extn: 9037


James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

mp3 indir

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals


Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T


[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7