The Future of Cardiac Safety Studies

Pandya PA*
Reliance Life Sciences, Mumbai, India

Introduction

Across the last several decades, to establish cardiac safety has been a major concern during drug development process. It was found that, many drugs are associated with sudden death and causing fatal arrhythmia. It is difficult identify compound having cardiac toxicity. However, one common effect of these drugs was to prolong QT, but the challenge is to find whether this problem is related to parent drug or metabolite or due to drug interaction or combination of all three?

Thorough QT/QTc Study

The objective of “thorough QT/QTc study” on health human population is to identify whether drug has a threshold pharmacologic effect on cardiac repolarization as it is regulatory concern [1,2]. This is generally detected by QT/QTc prolongation. Such studies are planned during early phase of drug development which help to provide maximum guidance for the later studies (Figure 1) [3,4].

There are Several Limitations of Thorough QT/QTc Studies

1. QTc is not considered to be strong biomarker as there are no consensus on the best suited method of acquiring, measuring, and analysing the QT interval during studies as due to poor signal, low frequency, low amplitude and has poor signal-to-noise ratio affected by several confounding factors. In addition, there is poor link between the experimental model of QTc and clinical events. Many times, it’s difficult to establish link between different episodes reported during study [1,5-7].

2. Prolongation of QT internal is also linked with many other factors. It’s not always a risk. Marketing approval with “Warning label” was considered for several drugs [8].

3. It’s very expensive to conduct “thorough QT/QTc studies” [9,10].

Conclusion

The most common reason for the drug withdrawal includes QT prolongation and pro-arrhythmias. To prove cardiac safety become extremely difficult for the developers once compound is shown prolong QT during drug development [11].

Refinement in regulations is needed based on earlier experience along with careful planning during pre-clinical stage to review Multiple Iron Channels (MICE), isolated cardiac myocytes, multiple Electrocardiography (ECG) collection, use of computer modelling and placing a premium on ER relationships [12-14]. The best strategy is to keep ECG as vital data point and establish cardiac safety with the help from preclinical information and early phase human studies keeping several other cardiac biomarkers (heart rate, lipids, CRP, BP, BNP, troponin and imaging) in consideration.

References

*Corresponding author: Pandya PA, Program Management, Reliance Life Sciences, Mumbai, India, Tel: +91-9967017172; E-mail: dipandya18@gmail.com

Received March 28, 2017; Accepted March 29, 2017; Published April 07, 2017

Copyright: © 2017 Pandya PA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.