The Generalization of the Stalling’s Theorem

Onsory A* and Araskhan M*

Department of Mathematics, Yazd Branch, Islamic Azad University, Yazd, Iran

Abstract

In this paper, we present a relative version of the concept of lower marginal series and give some isomorphisms among $\forall G$-marginal factor groups. Also, we conclude a generalized version of the Stalling’s theorem. Finally, we present a sufficient condition under which the order of the generalized Baer-invariant of a pair of finite groups divides the order of the generalized Baer-invariant of its factor groups.

Keywords: Schur-Baer variety; Pair of groups; $\forall G$-marginal series

Introduction

There exists a long history of interaction between Schur multipliers and other mathematical concepts. This basic notion started by Schur [1], when he introduced multipliers in order to study projective representations of groups. It was known later that the Schur multiplier had a relation with homology and cohomology of groups. In fact, if G is a finite group, then $M(G) \cong H^1(G, \mathbb{C}) \cong H_1(G, \mathbb{Z})$, where $M(G)$ is the Schur multiplier of G, $H(G, \mathbb{C})$ is the second cohomology of G with coefficient in \mathbb{C} and $H_1(G, \mathbb{Z})$ is the second internal homology of G [2].

Hopf [3] proved that $M(G) \cong (R \cap F)/[R, F]$. He also proved that the Schur multiplier of G is independent of the free presentation of G. Let (G, N) be a pair of groups, where N is a normal subgroup in Ellis [4] defined the Schur multiplier of the pair (G, N) to be the abelian group $M(G, N)$ appearing in the following natural exact sequence

$$H_1(G) \rightarrow H_1(G, N) \rightarrow M(G) \rightarrow M(G, N) \rightarrow 1,$$

where $H_1(\cdot)$ denote the third homology of a group with integer coefficients. He also proved that if the normal subgroup N possess a complement in G, then for each free presentation $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$ of G, $M(G, N)$ is isomorphic with the factor group $(R \cap [S, F])/[R, F]$, where S is a normal subgroup of F such that $S \cap R = N$. In particular, if $N = G$ then the Schur multiplier of (G, N) will be $M(G) = (R \cap [S, F])/[R, F]$.

We assume that the reader is familiar with the notions of the verbal subgroup $\forall G$ and the marginal subgroup $\forall G(G)$, associated with a variety of groups \forall and a group G [5] for more information on varieties of groups. Let F_r be the free group freely generated by the countable set $X = \{x_1, x_2, \ldots\}$ and \forall and V_r be two varieties of groups defined by the sets of laws \forall and V_r, respectively. Let N be a normal subgroup of a group G, then we define $[N^r \forall G]$ to be the subgroup of G generated by the elements of the following set:

$$\{(g_1, g_2, \ldots, g_{r}, v, \ldots, v) \in G \times \forall^r \mid 1 \leq r \leq N, v \in \forall_r, g_1, \ldots, g_r \in G, n \in N\}.$$

It is easily checked that $[N^r \forall G]$ is the least normal subgroup T of G such that N^rT is contained in $V_r(G/T)$ [6].

The first to create the generalization of the Schur multiplier to any variety of groups was Baer [7]. It is well known fact that the recent concept is useful in classifying groups into isologism classes. Leedham-Green and McKay [8] introduced the following generalized version of the Baer-invariant of a group with respect to two varieties \forall and \forall'.

Let G be an arbitrary group in \forall' with a free presentation $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$, in which F is a free group. Clearly, $1 \rightarrow W(G) = W(F)/R$ and hence $W(F) \subseteq R$, therefore,

$$1 \rightarrow R/W(F) \rightarrow F/W(F) \rightarrow G \rightarrow 1$$

is a \forall'-free presentation of the group G. We call

$$\forall[M(G)] = \frac{R \cap W(F)}{[R, W(F)]} \cong \frac{W(F)}{[W(F), W(F)]}$$

the generalized Baer-invariant of the group G. Thus, the Schur multiplier of the pair (G, N) is always abelian and independent of the free presentation of G. In particular, if \forall' is the variety of all finite groups and $N = G$ then the generalized Baer-invariant of the pair (G, N) will be

$$\forall[M(G, N)] = \frac{R \cap [S, F]}{[R, [S, F]]} = \forall M(G),$$

which is the usual Baer-invariant of G with respect to \mathbb{V} [8].

It is interesting to know the connection between the Baer-invariant of a pair of finite groups (G, N) and its factor groups with respect to the Schur-Baer variety \forall'. In the next section, we show that under some circumstances there are some isomorphisms among \forall'-marginal factor groups (Theorem 2.2). Also, a sufficient condition will be given such that the order of the generalized Baer-invariant of a pair of finite groups divides the order of the generalized Baer-invariant of the pair of its factor groups (Theorem 2.5).

Variety \forall' is called a Schur-Baer variety if for any group G in which...
the marginal factor group $G/V(G)$ is finite, then the verbal subgroup $V(G)$ is also finite. Schur [9] proved that the variety of abelian groups is a Schur–Baer variety and Baer [10] showed that a variety defined by outer commutator words carries this property. In 2002, Moghaddam et al. [11] proved that for a finite group G, $\text{V}(G)$ is finite with respect to a Schur–Baer variety V. In the following lemma we prove similar result for $\text{V}(G, M)$ and $\text{V}(G)$ using another technique.

Lemma 1.1. Let V be a Schur–Baer variety and G be a finite group in V with a normal subgroup N. Then there exists a group H with a normal subgroup K such that $[K/V(H)] < \infty$.

In particular, $|V(G)| = |V(H)| < \infty$.

Proof. Let $G = F/R$ be a free presentation for the group G and S be a normal subgroup of the free group F such that $N \cong S/R$, then

$$R \subseteq \frac{F}{W(F)[R/V(R)]}.$$

Let $H = F/V(F)[R/V(R)]$ and $K = S/F(W(F)[R/V(R)])$, then $W(F)/H \cong [V(F)]/N$. But

$$[K/V(H)] = \frac{W(F)[S/V(F)]}{W(F)[R/V(R)]} = \frac{W(F)(K \cap [S/V(F)])}{W(F)(K \cap [S/V(F)])}.$$

Also, $[N/V(G)] = \frac{[S/V(F)]}{W(F)(K \cap [S/V(F)])}$. Thus the result holds.

Stallings’ Theorem

In the following lemma we present some exact sequences for the generalized Baer-invariant of a pair of groups and its factor groups.

Lemma 2.1. Let G be a group with a free presentation $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$ and S, T be normal subgroups of the free group F such that $T \subseteq S$, $S/R \cong N$ and $T/R \cong K$. Then the following sequences are exact:

(i) \[1 \rightarrow \frac{W(F)R}{W(F)\{R/V(R)\}} \rightarrow \text{V}(G, N) \rightarrow \text{V}(G/K, N/K) \rightarrow \text{V}(G[K]/V(G[K]) \rightarrow 1; \]

(ii) $\text{V}(G, N) \rightarrow \text{V}(G/K, N/K) \rightarrow \text{V}(N/[N/V(G)]) \rightarrow \text{V}(N/K) \rightarrow 1$;

(iii) Moreover, if K is contained in $V(G)$, then the following sequence is exact:

\[1 \rightarrow W(F)(R \cap [S/V(F)]) \rightarrow \text{V}(G/K, N/K) \rightarrow \text{V}(N/[N/V(G)) \rightarrow 1. \]

Proof. Considering the definition mentioned above we can conclude:

\[\text{V}(G/K, N/K) = \frac{W(F)(R \cap [S/V(F)])}{K \cap [S/V(F)]}, \]

\[\text{V}(N/[N/V(G))] = \frac{W(F)(R \cap [S/V(F)])}{W(F)[R/V(R)]}. \]

Now one can easily check that the sequences (i) and (ii) are exact.

(iii) Using the assumption, we have $W(F)[V(F)] \subseteq R$. Therefore, one can easily check that the following sequence is exact:

\[1 \rightarrow \frac{R \cap [S/V(F)]}{W(F)[R/V(R)]} \rightarrow \text{V}(G/K, N/K) \rightarrow \text{V}(N/[N/V(G)) \rightarrow 1. \]

Let N be a normal subgroup of a group G. Then we define a series of normal subgroups of N as follows:

$N = V_s(N, G) \supseteq V_{s-1}(N, G) \supseteq \cdots \supseteq V_1(N, G) \supseteq \cdots$,

where $V_s(N, G) = [V_s(N, G), V_s(N, G)]$ for all $s \geq 1$. We call such a series the lower V_s-marginal series of N in G. One may also define the upper V_s-marginal series as in studies of Moghaddam et al. [11].

We say that the normal subgroup N of a group G is V_s-nilpotent if it has a finite lower V_s-marginal series. The shortest length of such series is called the class of V_s-nilpotency of N in G. If $N = G$, then this is called the lower V_s-marginal series of G. The group G is said to be V_s-nilpotent iff $V_s(G) = 1$, for some positive integer s.

Now, we want to show that under some circumstances there are some isomorphisms among V_s-marginal factor groups. By using Lemma 2.1, we have the following Theorem, which generalizes 7.9.1 of literature of Hilton and Stammbach [13].

Theorem 2.2. Let $f : G \rightarrow H$ be a group homomorphism and N be a normal subgroup of G and K be a normal subgroup of H such that $f(N) \subseteq K$. Suppose f induces isomorphisms $f_1 : G/N \rightarrow H/K$ and $\tilde{f} : N/V(N) \rightarrow K/V(K)$, and that $f \cdot : \text{V}(G, N) \rightarrow \text{V}(H, K)$ is an epimorphism. Then f induces isomorphisms $f_1 : G/V(G, N) \rightarrow H/V(K, H)$ and $\tilde{f} : N/V(N) \rightarrow K/V(K, H)$ for all $n \geq 0$.

Proof. At first, we want to mention a point that for making it easier to draw the following diagrams, we would like to introduce $P_n = f_1(N, G)$ and $Q_n = f_1(K, H)$. We proceed by induction. For $n = 0$ the assertion is trivial. For $n = 1$, consider the following diagram:

\[1 \rightarrow N/[N/V(G)] \rightarrow G/[V'/G] \rightarrow \text{V}(G) \rightarrow 1 \]

By the hypothesis \tilde{f}_1 and f_1 are isomorphism. Assume that $n \geq 2$. By considering Lemma 2.1(ii), we can conclude the following commutative diagram:

\[\text{V}(G, N) \rightarrow \text{V}(G/K, N/K) \rightarrow \text{V}(N/[N/V(G)]) \rightarrow \text{V}(N/K) \rightarrow 1. \]

Note that the naturality of the map f induces isomorphisms $f_1 \in \{1, 2, \ldots, 5\}$ such that (\ast) is commutative. By hypothesis a_1 is an epimorphism and a_2, a_3 are isomorphisms. Also, by considering the induction hypothesis and definition of the Baer-invariant of the pair of groups, a_3 is an isomorphism. Hence by five lemma of Rotman’s studies [14] a_1 is an isomorphism. Now consider the following diagram and in the same way, f_1 is an isomorphism.

Now we obtain the following corollary.
Clearly, which and H/K is an isomorphism, therefore, and G/P_n is an isomorphism. Finally, by the following diagram:

\[
\begin{array}{c}
1 \\
\downarrow \\
N/P_n \\
\downarrow \\
G/N \\
\downarrow \\
1
\end{array}
\]

By the above discussion α is an isomorphism and by induction of hypothesis \overline{f}_{n+1} is an isomorphism, therefore, \overline{f}_n is an isomorphism. Finally, by the following diagram:

\[
\begin{array}{c}
1 \\
\downarrow \\
Q_{n-1}/Q_n \\
\downarrow \\
K/Q_n \\
\downarrow \\
1
\end{array}
\]

And the same way, f_1 is an isomorphism.

Now we obtain the following collary.

Corollary 2.3. Let $(f,g):(G,N)\rightarrow(H,K)$ are group homomorphisms satisfy the hypotheses of Theorem 2.2. Suppose further that N and K are V_c-nilpotent and V_c-nilpotent, respectively. Then f and f_1 are isomorphisms.

Proof. The assertion follows from Theorem 2.2 and the remark that there exists $n \geq 0$ such that $V_n(N,G) = \{1\}$ and $V_n(K,H) = \{1\}$.

Now we have the following theorem, which is a generalization of Stallings’ theorem [15].

Theorem 2.4. Let V be a variety of groups and $f: G \rightarrow H$ be an epimorphism. Let N be a V_c-nilpotent normal subgroup of G and K be a normal subgroup of H such that $f(N) = K$. If $\ker f \subseteq [W^\gamma G]$ and $WVM(H,K)$ is trivial, then f and f_1 are isomorphisms.

Proof. Put $M = \ker f$, then $N = [W^\gamma G]$ and $G/N \cong H/K$ and $V_c(N,M) = V_c(K,H)$ for all $n \geq 0$. Now the result follows from Corollary 2.3.

Finally, a sufficient condition will be given such that the order of the generalized Baer-invariant of a pair of finite groups divides the order of the generalized Baer-invariant of the pair of its factor groups with respect to two varieties of groups. Let $\psi: E \rightarrow G$ be an epimorphism such that $\ker \psi \subseteq V^\gamma(E)$. We denote by $(W^\gamma)^\psi(E)$ the intersection of all subgroups of the form $\psi(V^\gamma(E))$. Clearly, $(W^\gamma)^\psi(E)$ is a characteristic subgroup of G which is contained in $V^\gamma(G)$. In particular, if W is the variety of all groups and V is a variety of abelian groups then this subgroup is denoted by $Z^\gamma (G)$ as in literature of Karpilovsky [2].

Now using the above concept we have the following Theorem.

Theorem 2.5. Let K be a normal subgroup of G contained in $N \cap (W^\gamma)^\psi(G)$. Then

$$|WVM(G,N)\rangle \text{ divides } |WVM(G/K,N/K)\rangle.$$

Proof. By theorem 3.2 of Neumann [5], natural homomorphism $WVM(G)\rightarrow WVM(G/K)$ will be a monomorphism. Now the following commutative diagram

\[
\begin{array}{c}
WVM(G,N) \\
\downarrow \\
WVM(G/K,N/K)
\end{array} \subseteq
\begin{array}{c}
WVM(G) \\
\downarrow \\
WVM(G/K)
\end{array}
\]

implies that the natural homomorphism $WVM(G,N)\rightarrow WVM(G/K,N/K)$ is also a monomorphism. Thus Lemma 1.2 (i) implies that $WVM(G,K)$ is trivial. Now we have $|WVM(G/K,N/K)| = |K \cap [W^\gamma G]| |WVM(G,N)|$, which completes the result.

Acknowledgment

The authors wish to thank Yazd Branch, Islamic Azad University for its support of research project under the title the Generalization of the Stallings’ theorem.

** References**