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Introduction
Throughout the paper w,χ and Λ denote the classes of all, gai and 

analytic scalar valued single sequences, respectively. We write w3 for 
the set of all complex triple sequences (xmnk), where m,n,k∈, the set 
of positive integers. Then, w3 is a linear space under the coordinatewise 
addition and scalar multiplication.

Some initial work on double series is found in Apostol [1] and 
double sequence spaces is found in Hardy [2], Subramanian et al. [3-9], 
and many others. Later on, some work on triple sequence spaces can 
also be found in Sahiner et al. [10] , Esi et al. [11-15], Subramanian et 
al. [16-19], Prakash et al. [20-24] and many others.

Let (xmnk) be a triple sequence of real or complex numbers. Then the 

series , , =1 mnkm n k
x∞∑  is called a triple series. The triple series , , =1 mnkm n k

x∞∑
is said to be convergent if and only if the triple sequence (Smnk) is 
convergent, where

, ,

, , =1
= ( , , = 1,2,3,...)m n k

mnk ijqi j q
S x m n k∑ .

A sequence x=(xmnk) is said to be triple analytic if
1

, , < .m n k
m n k mnksup x + + ∞

The vector space of all triple analytic sequences are usually denoted 
by Λ3. A sequence x=(xmnk) is called triple entire sequence if

1

0m n k
mnkx + + →  as , , .m n k →∞

The vector space of all triple entire sequences are usually denoted 
by Γ3. The spaces Λ3 and Γ3 are metric spaces with the metric

1

, ,( , ) = : , , :1, 2,3,... ,m n k
m n k mnk mnkd x y sup x y m n k+ +

 − 
 

   (1)

for all x={xmnk} and y={ymnk} in Γ3. Let φ be the set of finite sequences.

Consider a triple sequence x=(xmnk). The (m,n,k)th section x[m,n,k] 

of the sequence is defined by 
, ,[ , , ]

, , =0
= m n km n k

ijq ijqi j q
x x ℑ∑  for all i,j,q∈,

where ℑijq is a three dimensional matrix with 1 in the (i,j,k)th position 
and zero otherwise.

Let M and Φ be mutually complementary Orlicz functions. Then, 
we have:

(i) For all u,y ≥ 0,

uy ≤ M(u)+Φ(y), (Young’s inequality) [see [25]]        (2)

(ii) For all u ≥ 0,

uη(u)=M(u)+Φ(η(u)).        (3)

(iii) For all u ≥ 0, and 0<λ<1,

M(λu) ≤ λM(u)          (4)

Lindenstrauss and Tzafriri [26] used the idea of Orlicz function to
construct Orlicz sequence space

=1
= : < , > 0 .k

M k

x
x w M for some ρ

ρ
∞   ∈ ∞  

   
∑

The space M with the norm

=1
= > 0 : 1 ,k

k

x
x inf Mρ

ρ
∞   ≤  

   
∑

becomes a Banach space which is called an Orlicz sequence space. For 
M(t)=tp(1≤p<∞), the spaces M coincide with the classical sequence 
space p.

A sequence f=(fmnk) of Orlicz functions is called a Musielak-Orlicz 
function. A sequence g=(gmnk) defined by

( ) ( )( ){ }= : 0 , , , = 1,2,mnk mnkg v sup v u f u u m n k− ≥ 

is called the complementary function of a Musielak-Orlicz function f. 
For a given Musielak-Orlicz function f, the Musielak-Orlicz sequence 
space tf is defined as follows

( ){ }1/3= : 0, , , ,
m n k

f f mnkt x w M x as m n k
+ +

∈ → →∞
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( ) ( ){ }1/3 3= : ( )! 0, , ,
m n k

mnkx w m n k x as m n kχ
+ +

∆ ∈ + + ∆ → →∞

( ) { }1/3 3
, ,= : < .m n k

m n k mnkx w sup x + +Λ ∆ ∈ ∆ ∞

The space Λ3(∆) is a metric space with the metric

( ) { }1/
, ,, = : , , = 1,2,m n

m n k mnk mnkd x y sup x y m n k+∆ − ∆ 

for all x=(xmnk) and y=(ymnk) in Λ3(∆).

The space χ3(∆) is a metric space with the metric

( ) ( ){ }1/
, = ( )! : , , = 1,2,

m n k
mnk mnk mnkd x y sup m n k x y m n k

+ +
+ + ∆ − ∆ 

for all x=(xmnk) and y=(ymnk) in χ3(∆).

Let p=(pmnk) be a sequence of positive real numbers. We have the 
following well known inequality, which will be used throughout this 
paper:

( )p p pmnk mnk mnk
mnk mnk mnk mnka b D a b+ ≤ +                    (6)

where amnk and bmnk are complex numbers, D=max{1,2H-1} and 
H=supmnkpmnk<∞.

Spaces of strongly summable sequences were studied at the initial 
stage by Kuttner, Maddox and others. The class of sequences those are 
strongly Cesaro summable with respect to a modulus was introduced by 
Maddox as an extension of the definition of strongly Cesaro summable 
sequences. Jeff Connor further extended this definition to a definition 
of strongly A-summability with respect to a modulus when A is non-
negative regular matrix.

Let η=(λabc) be a non-decreasing sequence of positive real numbers 
tending to infinity and λ111=1 and λa+b+c+3≤λa+b+c+3+1, for all a,b,c∈.

The generalized de la Vall è e-Poussin means are defined by 
( ) 1

, ,
= ,abc abc mnkm n k Iabc

t x xλ−
∈∑  where [ ]= 1, .abc abcI abc abcλ− +  A sequence 

x=(xmnk) is said to (V,λ)-summable to a number L if tabc(x)→L, as abc→∞.

Throughout the article E will represent a semi normed space by 
a semi norm q. We define w3(E) to be the vector space of all E-valued 
sequences. Let f be an Orlicz function and p=(pmnk) be any sequence of 
positive real numbers. Let ( )= jk

mnA a  be four dimensional infinite regular 
matrix of non-negative complex numbers such that , ,

< .jk
mnm n k

a ∞∑
We define the following sets of sequences in this article:

( ) ( )( )1/3 1
3 , ,, , , , = : ( )! = 0

pmnkm n kE r jk r
p q r pqr mn mnkmnk I pqr

V A f p x w E lim a f q m n k xλ γ γχ
λ

+ +−
→∞ ∈

   ∆ ∈ + + ∆      
∑  

uniformly in m,n,k.

( ) ( )( )1/3 1
3 , ,, , , , = : = 0

pmnkm n kE r jk r
p q r pqr mn mnkmnk I pqr

V A f p x w E lim a f q xλ γ γλ
+ +−

→∞ ∈Γ

   ∆ ∈ ∆      
∑  

uniformly in m,n,k

( ) ( )( )1/3 1
3 , , , ,, , , , = : <

pmnkm n kE r jk r
n j k p q r pqr mn mnkmnk I pqr

V A f p x w E sup sup a f q xλ γ γλ
+ +−

∈Λ

   ∆ ∈ ∆ ∞      
∑

For γ=1 these spaces are denoted by , , , , ,E r

Z
V A f pλ ∆   for Z=χ3,Γ3 

and Λ3 respectively. We define

( ) ( )( )1/3 1
3 , ,, , , , = : ( )! = 0

pmnkm n kE r r
p q r pqr mnkmnk I pqr

V A f p x w E lim f q m n k xλ γ γχ
λ

+ +−
→∞ ∈

   ∆ ∈ + + ∆      
∑

Similarly 3, , ,E rV f pλ γ Γ
 ∆   and 3, , ,E rV f pλ γ Λ

 ∆   can be defined.

For E=, the set of complex numbers, q(x)=|x|; f(x)=x1/m+n+k;pmn=1, 
for all m,n,k∈, r=0, γ=0, the spaces , , , ,E r

Z
V f pλ γ ∆   for Z=χ3,Γ3 and Λ3 

where Mf is a convex modular defined by

( ) ( ) ( )1/

=1 =1 =1
= , = .

m n k
f mnk mnk mnk fm n k

M x f x x x t
+ +∞ ∞ ∞

∈∑ ∑ ∑
We consider tf equipped with the Luxemburg metric

( )
1/

=1 =1 =1
, =

m n k
mnk mnk

mnkm n k

x y
d x y f

mnk

+ +
∞ ∞ ∞  −

 
 
 

∑ ∑ ∑
is an extended real number.

If X is a sequence space, we give the following definitions:

(i) X= the continuous dual of X;

(ii) { }, , =1
= = ( ) : < , ;mnk mnk mnkm n k

X a a a x for each x Xα ∞
∞ ∈∑

(iii) { }, , =1
= = ( ) : , ;mnk mnk mnkm n k

üüüüüüüüüüüüβ ∞
∈∑

(iv) { }, ,
1 , , =1

= = ( ) : < , ;M N K
mnk mnk mnk mnkm n k

X a a sup a x for each x Xγ
≥ ∞ ∈∑

(v) { }'; = ( ) : ;f
mnklet X be an FK space then X f f Xφ− ⊃ ℑ ∈

(vi) { }1/= = ( ) : < , ;m n k
mnk mnk mnk mnkX a a sup a x for each x Xδ + + ∞ ∈

X, X, X are called α-(or Kothe-Toeplitz) dual of X, β-(or generalized-
Kothe-Toeplitz) dual of X, γ-dual of X, δ-dual of X respectively.

The notion of difference sequence spaces (for single sequences) was 
introduced by Kizmaz [27] as follows

( ) ( ) ( ){ }= = :k kZ x x w x Z∆ ∈ ∆ ∈

for Z=c,c0 and ∞ , where ∆xk=xk-xk+1 for all k∈.

Later on the notion was further investigated by many others. We 
now introduce the following difference double sequence spaces defined by

( ) ( ) ( ){ }2= = :mn mnZ x x w x Z∆ ∈ ∆ ∈

where Z=Λ2,χ2 and ∆ xmn =(xmn-xmn+1)-(xm+1n-xm+1n+1)=xmn-xmn+1-
xm+1n+xm+1n+1 for all m,n∈.

Let w3,χ3(∆mnk),Λ3(∆mnk) be denote the spaces of all, triple gai 
difference sequence space and triple analytic difference sequence space 
respectively and is defined as

∆mnk=xmnk-xm ,n+1,k-xm ,n ,k+1+xm ,n+1,k+1-xm+1,n ,k+xm+1,n+1,k+xm+1,n ,k+1-
xm+1,n+1,k+1 and ∆0xmnk=〈xmnk〉.

Definitions and Preliminaries
A sequence x=(xmnk) is said to be triple analytic if 

1

< .m n k
mnk mnksup x + + ∞  

The vector space of all triple analytic sequences is usually denoted by Λ3. 

A sequence x=(xmnk) is called triple entire sequence if 
1

0m n k
mnkx + + →  

as m,n,k→∞. The vector space of triple entire sequences is usually 
denoted by Γ3. A sequence x=(xmnk) is called triple gai sequence if 

( )( )
1

! 0m n k
mnkm n k x + ++ + →  as m,n,k→∞. The vector space of triple gai 

sequences is usually denoted by χ3. The space χ3 is a metric space with 
the metric

( )( )
1

, ,( , ) = ! : , , :1, 2,3,...m n k
m n k mnk mnkd x y sup m n k x y m n k+ +

 
+ + − 

 
         (5)

for all x={xmnk} and y={ymnk} in χ3.

Throughout the article w3,χ3(∆),Λ3(∆) denote the spaces of all, triple 
gai difference sequence spaces and triple analytic difference sequence 
spaces respectively [28].

For a triple sequence x∈w3, we define the sets
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represent the spaces [V,λ]z, for Z=χ3,Γ3 and Λ3. These spaces are called as 
λ-strongly gai to zero, λ-strongly entire to zero and λ-strongly analytic 
by the de la Valle-Poussin method. In the special case, where λpqr=pqr, 
for all p,q,r=1,2,3…. the sets [V,λ]χ3, [V,λ] Γ3 and [V,λ]Λ3 reduce to the 
sets 3 3

3 3,w w
χ Γ

 and 3
3 .w

Λ

In this chapter we introduced generalized semi normed difference 
of triple gai sequence spaces defined by an Orlicz function. We study 
their different properties and obtain some inclusion relations involving 
these semi normed difference triple gai sequence spaces.

Main Results
Theorem 1

Let the sequence p=(pmnk) be analytic. Then the sequence space 
, , , , ,E r

Z
V A f pλ γ ∆   are linear spaces over the complex field , for Z=χ3 

and Λ3.

Proof: It is easy. Therefore the proof is omitted.

Theorem 2
Let f be an Orlicz function, then 3 3, , , , , , , ,E r E rV A f p V A f pλ γ λ γχ Λ

   ∆ ⊂ ∆   

Proof: Let ( ) 3= , , , ,E r
mnkx x V A f pλ γ χ

 ∈ ∆   will represent a semi 
normed space by a semi norm q. Here there exists a positive integer M1 
such that q≤M1. Then we have

( )( )
( )( ) ( )( )

1/1 1

1/ 1
1 , ,

( )! , 1

pmnkm n kjk r jk
pqr mn mnk pqr mnmnk I mn Ipqr pqr

pmnkm n k Hr jk
mnk pqr mnm n k I pqr

a f q x D a

f q m n k x D M f a

γ

γ

λ λ

λ

+ +− −
∈ ∈

+ + −
∈

 ∆ ≤  

 + + ∆ +  

∑ ∑

∑

Thus 3, , , , .E rx V A f pλ γ Λ
 ∈ ∆   Since 3, , , , .E rx V A f pλ γ χ

 ∈ ∆   This completes 
the proof.

Theorem 3

Let p=(pmnk)∈χ3, then 3, , , ,E rV A f pλ γ χ
 ∆   is a paranormed space with

( ) ( )( )
1/

1/1= ( )!
Hpmnkm n kjk r

pqr pqr mn mnkmnk I pqr
g x sup a f q m n k xγλ

+ +−
∈

  + + ∆    
∑

where H=max(1,supmnkpmnk)

Proof: From Theorem 3.2, for each ( )3, , , , ,E rx V A f p g xλ γ χ
 ∈ ∆   

exists. Clearly g(-x)=g(x). It is trivial that ( )1/
( )! =

m n kr
mnkm n k xγ θ

+ +
+ + ∆  

for = .x θ  Hence, we get ( ) = 0.g θ  By Minkowski inequality, we 
have g(x+y)≤g(x)+g(y). Now we show that the scalar multiplication 
is continuous. Let α be any fixed complex number. By definition of f, 
we have x→θ implies, g(ax)→0. Similarly we have for fixed X and α→0 
implies g(αx)→0. Finally x→θ and α→0 implies g(αx)→0. This completes 
the proof.

Theorem 4

If r≥1 then the inclusion 1
3 3, , , , , , , ,E r E rV A f p V A f pλ γ λ γχ χ

−   ∆ ⊂ ∆     is 

strict. In general 3 3, , , , , , , ,E j E rV A f p V A f pλ γ λ γχ χ
   ∆ ⊂ ∆     for j=0,1,2,…r-1 

and the inclusions are strict.

Proof: The result follows from the following inequality

( )( )
( )( )
( )( )

1/1

1/1

1/ 11
1

1

( )!

( )!

( 1)!

( 1 )!

pmnkm n kjk r
pqr mn mnkmnk I pqr

pmnkm n kjk
pqr mn mnkmnk I pqr

pmnkm n kjk
pqr mn mnkmnk I pqr

jk
pqr mnmnk I pqr

a f q m n k x

D a f q m n k x

D a f q m n k x

D a f q m n k

γλ

λ

λ

λ

+ +−
∈

+ +−
∈

+ + +−
+∈

−
∈

 + + ∆ ≤  

 + +  

 + + + +  

+ + +

+

∑

∑

∑

∑ ( )( )
( )( )
( )( )

1/ 1
1

1/ 11
1

1/ 31
1 1 1

( 1 )!

( 3)!

pmnkm n k
mn k

pmnkm n kjk
pqr mn m nmnk I pqr

pmnkm n kjk
pqr mn m n kmnk I pqr

x

D a f q m n k x

D a f q m n k x

λ

λ

+ + +
+

+ + +−
+∈

+ + +−
+ + +∈

 
  

 + + + +  

 + + +  

∑

∑

proceeding inductively, we have 3 3, , , , , , , ,E j E rV A f p V A f pλ γ λ γχ χ
   ∆ ⊂ ∆     for 

j=0,1,2,…r-1. The inclusion is strict and it follows from the following 
example.

Example 1: Let E=C, q(x)=|x|; λpqr=1 for all p,q,r∈, pmnk=3 
for all m,n,k∈. Let f(x)=x, for all [ ) 3 3 30, ; =jk

mnx a m n k− − −∈ ∞  for 
all m,n,k,j∈; γ=1, r≥1. Then consider the sequence x=(xmnk) 

defined by ( ) ( )1=
( )!

r m n k
mnkx mnk

m n k
+ +

+ +
 for all m,n,k∈. Hence 

( ) 3, , , ,C r
mnkx V A f pλ χ

 ∈ ∆   but ( ) 1
3, , , ,C r

mnkx V A f pλ χ

− ∉ ∆ 

Theorem 5

Let f be an Orlicz function, then

(a)  Let 0≤pmnk≤qmnk, for all m,n,k∈ and mnk

mnk

q
p

 
 
 

 be analytic, then 

3 3, , , , , , , ,E r E rV A f p V A f pλ γ λ γχ χ
   ∆ ⊂ ∆   

(b) If 0<infmnkpmnk<pmnk≤1 for all m,n,k∈ then 

3 3, , , , , , ,E r E rV A f p V A fλ γ λ γχ χ
   ∆ ⊂ ∆   

(c) If 1≤pmnk≤supmnkpmnk<∞, then 3 3, , , , , , ,E r E rV A f V A f pλ γ λ γχ χ
   ∆ ⊂ ∆   

Theorem 6 

Let f be an Orlicz function and s be a positive integer. Then, 
3 3, , , , , , , ,E r E rV A f q V A f pλ γ λ γΛ Λ

   ∆ ⊂ ∆   

Proof: Let ε>0 be given and choose δ with 0<δ<1 such that 

f(t)<ε for 0≤t≤δ. Write ( )( )1/1
=

m n ks r
mnk mnky f q x Mγ

+ +−
∆ −  and consider 

( ) ( ) ( ),
= .

p p pjk jk jkmnk mnk mnk
mn mnk mn mnk mn mnkmnk I mnk I y mnk Ir r mnk r

a f y a f y a f y
δ∈ ∈ ≤ ∈

+          ∑ ∑ ∑

Since f is continuous, we have

( )
, ,

pjk H jkmnk
mn mnk mn

mnk I y mnk I yr mnk r mnk

a f y a
δ δ

ε
∈ ≤ ∈ ≤

≤  ∑ ∑                  (7)

and for ymnk>δ, we use the fact that, < 1mnk mnk
mnk

y yy
δ δ

≤ +  and so, by the 
definition of f, we have for ymnk>δ,

( ) ( )< 2 1 mnk
mnk

yf y f
δ

Hence

( ) ( )( )( )1

, ,

1 11, 2 1
Hp pjk jkmnk mnk

mn mnk mn mnk
mnk I y mnk I ypqr pqrr mnk r mnk

a f y max f a y
δ δ

δ
λ λ

−

∈ ≤ ∈ ≤

≤  ∑ ∑   (8)

From (7) and (8) we obtain 3 3, , , , , , , , .E r E rV A f q V A f pλ γ λ γΛ Λ
   ∆ ⊂ ∆     

This completes the proof.
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