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Review Article

Abstract
The gut microflora is a community of trillions of bacterial cells synergistically inhabiting the human gastrointestinal 

tract. These microbes contact everything that is consumed and release regulatory factors that affect host energy 
homeostasis, lipid and carbohydrate metabolism, activation of immune cells, oxidative state, epithelial cell 
wall integrity and even neurological signals. The gut microflora is essentially an independent organ supporting 
human health where imbalances in the gut community populations (dysbiosis) manifest in disease. Diabetes and 
neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease share a similar molecular pathology 
rooted in gut microflora activity. Both of these conditions are associated with a dysbiosis characterized by low 
species diversity, a higher proportion of pathobionts at the expense of symbionts, an abundance of proinflammatory 
microbes and fewer butyrate-producing strains. Many of these factors can be ameliorated with Lactobacillus spp. 
and Bifidobacterium spp. probiotic treatment aimed to reestablish healthy gut microflora diversity. Indeed, certain 
commensal and pathogenic strains promote chronic low-grade inflammation that stresses cellular infrastructure 
eventually leading to apoptosis in both the pancreas and the brain. Also, lack of some beneficial fermentation 
products such as butyrate and ferulic acid initiates a cascade of events disrupting metabolic homeostasis. Finally, 
signaling initiated by the microflora and its metabolites has been shown to disrupt the delicate intracellular balance 
of PI3K/Akt/mTOR signaling, which fundamentally regulates events leading up to diabetes and neurodegenerative 
disease pathogenesis. The following review investigates the relationship between the manifestation and molecular 
signaling of diabetes and neurodegenerative disorders and how the balance of gut microflora populations is critical 
to both prevent and possibly treat these diseases.
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Introduction
Humans coexist with a vast community of microbial species 

residing in their gastrointestinal tract (GIT) collectively known as the 
gut microflora. There are an estimated 1013-1014 bacterial cells found 
in the GIT constituting over 1000 species [1,2]. This dense ecosystem 
constitutes an intimate relationship with the host enabling the digestion 
of vitamins, minerals and otherwise indigestible fibers while producing 
signaling factors essential for human health. 

The dominant phyla consisting of approximately 90% of the total 
gut microflora are the Firmicutes and Bacteroidetes, while other 
significant phyla include Actinobacteria, Proteobacteria, Fusobacteria, 
Spirochaetae and Verrucomicrobia [3]. The gut microflora significantly 
varies between people depending on their diet, antibiotic use and other 
environmental factors although a set of core physiological properties 
are maintained [4]. Broadly, people can be characterized into one 
of three enterotypes that are dominated by the genera Bacteroides, 
Prevotella or Ruminococcus [5]. These enterotypes are age, gender and 
region independent and seem to depend on the composition of the diet. 

Disease is associated with dysbiosis, the imbalance of gut microflora 
populations. This includes lower species diversity, reduced number 
of beneficial microbes (symbionts), exaggerated number of harmful 
microbes (pathobionts), an increase in pro-inflammatory bacteria and a 
decrease in butyrate-producing bacteria. These changes broadly impact 
host physiology especially in response to inflammation, oxidative 
stress, energy homeostasis, hormonal signaling and intracellular 

signaling cascades therefore contributing to the pathogenesis of many 
chronic diseases including diabetes and neurodegeneration (Figure 1). 

Diabetes is a globally mounting health and economic concern. 
Diabetes is the most common metabolic disorder worldwide and 
an estimated 8.3% of the global population is currently living with 
diabetes. Strikingly, incidence rates are ever rising 3-5% per year [6,7]. 
This immense rise is not fully explained by genetic and obesity-related 
variations hence causation must be at least partially attributed to other 
environmental factors including the progressively degenerating health 
of the intestinal microflora. 

Diabetes is characterized by a dysregulation of insulin activity 
either by reduced production in the pancreas due to an autoimmune 
response against insulin producing β-cells (Type-1 diabetes; T1D) 
or an inappropriate release of insulin in response to glucose levels 
(Type-2 diabetes; T2D). In either case, insulin desensitization 
leads to hyperglycemia, a condition that causes severe stress on 
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physiological systems. There are many players contributing to diabetes 
disease pathology including chronic low-grade inflammation and 
endotoxemia, oxidative stress, degradation of insulin signaling factors, 
impaired intestinal permeability and misregulation of intracellular 
signaling pathways. Notably, all of these pathways are linked to diet-
induced dysbiosis [8].

Chronic peripheral hyperinsulinemia and insulin resistance are 
the two prominent features of diabetes and both these conditions 
predispose the brain to damage. Under normal conditions, insulin 
signaling is neuroprotective and protects neurons from various 
oxidative, inflammatory and toxic stresses. Considering that insulin 
found in the brain is from pancreatic origin, it is understandable that 
in a diabetic state, peripheral insulin resistance is carried over to central 
insulin resistance and resulting impairments in neuronal growth, 
differentiation, learning, memory and cognition manifest [9-11]. 

Neurodegeneration is an age-related progressive cognitive 
decline manifesting in several devastating neurological deficits from 
motor impairment to memory loss. Like diabetes, inflammation, 
oxidative stress, energy homeostasis and dysregulation of intracellular 
signaling pathways constitute the major pathological features of 
neurodegeneration. Interestingly, there is significant cross-talk between 
the molecular signaling cascades of neurodegeneration and diabetes, all 
of which are linked to the health of the gut microflora. 

Alzheimer’s disease (AD) is characterized by the progressive 
loss of memory, motivation, disorientation, cognitive abilities and 
eventually bodily functions. It is the most common neurodegenerative 
disease, affecting up to 7% of people over 60 and 80% of people 
over 80 in industrialized countries [12]. Pathologically, AD is 
characterized by the accumulation of extracellular amyloid plaques 
and prion-like intracellular neurofibrillary tangles (NFTs) in the 
brain that are composed of protein aggregates of amyloid(A)β and 
hyperphosphorylated tau, respectively. Genetic mutations in the 
amyloid precursor protein (APP) and presenilins (PS) increase 
the production of Aβ42, a minor form of Aβ that has increased 
aggregatibility and forms the major part of senile plaques. This plaque 
accumulation instigates neuronal cell apoptosis from accumulating 
oxidative stressors and dysregulation of intracellular signaling. 

Parkinson’s disease (PD) is a multifactorial disease rooted in both 
environmental and genetic factors and affects 2% of people over 60 
and 5% of people over 80, worldwide [13]. It is characterized by the 
progressive degeneration of dopaminergic neurons in the substantia 
nigra, a midbrain region. The atrophy of these neurons contributes to 
the progressive motor deficits characteristic of PD including progressive 
shaking, slowness in movement, rigidity, depression, dementia and 
digestive difficulties. One of the hallmarks of PD is the formation of 
Lewy bodies and Lewy neurites, insoluble protein aggregates composed 
primarily of α-synuclein.

Diabetes and neurodegenerative diseases are inherently distinct 
pathologies yet frequently manifest together. The decreased insulin 
levels and corresponding hyperglycemia in diabetes creates various 
neurological stresses ultimately leading to disease. Patients with T2D 
have twice the incidence of sporadic AD than healthy individuals 
[14] and about 40% higher chance of developing PD [15]. In fact, the 
increased sensitivity of AD patients to insulin and diabetic markers has 
coined AD as ‘Type 3 Diabetes’ [16]. This relationship is not surprising 
as it has been long known that insulin-like signaling (IIS) and metabolic 
syndrome leads to premature aging and cognitive deficits [17]. PD 
patients with diabetes acquire more severe disease manifestations 
[18,19] and it has been shown that 8-30% of PD patients develop 
diabetes, which is significantly higher than the healthy population, and 
those people acquire more severe PD symptoms [20]. PD patients also 
experience a much higher incidence of glucose intolerance and insulin 
resistance, even without a diagnosis of T2D. In PD, insulin resistance 
is coupled with an increased vulnerability to chemically-induced 
neuronal damage, exasperated motor deficits and dopamine depletion 
indicating that T2D compounds PD symptoms [21].

Relationship between Gut Microflora and the 
Development of Diabetes and Neurodegeneration 

Dysbiosis predisposes, aggravates or even causes diabetes. Diet 
drastically impacts the composition of the gut microflora evident by 
the polarity of the diet-dependent enterotypes. This is important as 
the composition of the gut microflora affects how the body processes 
energy and extracts calories from food. Likewise, high-fat and high-
sugar diets alter the microflora populations such that it provokes 
the underlying pathology of diabetes, namely imbalances in energy 
homeostasis, circulating glucose levels, apoptosis, proinflammatory 
and oxidative states. 

In T2D, there is an overall loss of gut microbial diversity with 
an increase in opportunistic pathogens. This includes a decrease in 
the phyla Firmicutes with a proportionate increase in Bacteroidetes, 
together with a decrease in butyrate-producing bacteria [22]. 

Figure 1: The gut flora has a blanket effect on several aspects of disease 
development. Diet, probiotics and prebiotics all influence the populations of 
the gut microflora. Highfat and high-sugar diets negatively impact beneficial 
microbes leading to dysbiosis characterized by an increase in pathobionts 
at the expense of symbionts. Probiotics and prebiotics realign gut dysbiosis 
by promoting a healthy balance of beneficial microbes including butyrate-
producing, balancers of energy homeostasis, anti-inflammatory and anti-
oxidative species. Since many chronic diseases have a multi-faceted etiology 
rooted in inflammation and metabolic distress, the broad action of beneficial 
gut microflora species is a keen target for reversing the pathogenesis of 
disease.
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Specifically, Bacteroides vulgatus, Faecalibacterium prauznitzii and 
the Bifidobacterium and Roseburia genuses are under-represented 
in diabetic patients [3,23,24]. Various species belonging to the 
Lactobacillus genus are reported to be elevated in diabetic models, 
however several known probiotic Lactobacillus spp. have also been 
identified as beneficial in treating diabetes (Table 1). In addition, an 
increase in fecal levels of Lactobacillus gasseri, Streptococcus mutans 
and Escherichia coli is predictive of insulin resistance [25]. When 
insulin-resistant males received lean donor fecal transplantations, 
there was a significant increase in intestinal microbial diversity and 

a distinct increase in butyrate-producing bacteria such as Roseburia 
and Faecalibcaterium spp. in the feces and Eubacterium halii in the 
small intestine [26]. Not only are gut microbial populations altered 
in diabetes, but therapeutic interventions to reinstate gut microbial 
homeostasis has potential to alleviate the associated symptoms. 

Certain deficits in beneficial microflora populations are associated 
with an increased autoimmune response and greater destruction of 
the insulin producing pancreatic β-cells. It was shown that reduced 
Lactobacillus or Bifidobacterium genuses predisposed rat islet 
cells to autoimmune destruction [27]. Interestingly, an antibiotic 

Probiotic
Effects on

ReferencesDietary Factors Insulin Signaling Inflammation Molecular Effects
Phylum Actinobacteria

Genus
Bifidobacterium 

↓ HFD
↓ Obesity
↓ T2D 

↓ Plasma glucose

↓ Insulin resistance
B. animalis

Anti-inflammatory
B. animalis
B. brevis
B. infantis

↑ IRS1
↑ Akt
↑ ERK
↑ FA (B. animalis)
↑ Butyrate 
B. brevis, B. infantis, B. 
longum)
↑ EPAs (B. brevis)

[23,50,205-210]

Phylum Firmicutes

Genus
Lactobacillus

↓ in T2D
L. reuteri
L. acidophilus
L. casei
L. plantarum
L. rhamnosus

↓ Plasma glucose
L. reuteri
L. acidophilus
L. casei
L. plantarum
↓ Insulin resistance
L. reuteri
L. acidophilus
L. fermentum
L. casei
L. plantarum
L. rhamnosus
↓ β-cell injury
L. plantarum

Anti-inflammatory
L. reuteri
L. acidophilus
L. fermentum
L. casei
L. salivarius
L. plantarum
L. rhamnosus

↓ GLP-1 (L. reuteri)
↓ GLP-2 (L. casei)
↑ FA (L. reuteri, L. 
fermentum)
↑ PPARα mRNA (L. 
plantarum)
↓ Gluconeogenic genes 
(L. rhamnosus)
↑ Lactate  (all spp.)

[22,24,43,44,81,211-224]

Genus 
Bacillus

↑ T2D
B. caccae

↓ Insulin resistance Anti-inflammatory
B. caccae
B mesentericus

[25,225-227]

Genus
Clostridium

↓ T2D
Clostridium cluster XIV
Clostridium cluster IV
Clostridium coccoides
Clostridium leptum group
↑ T2D
Clostridium difficile

↓ Plasma glucose

Anti-inflammatory
C. butricum
Pro-inflammatory
C. difficile
Clostridium cluster XIV

↑ Butyrate 
Clostridium cluster XIV

[25,227-234]

Genus 
Faecalibacterium

↓T2D 
F. prausnitzii

Anti-inflammatory
F. prausnitzii

↑ Butyrate 
Faecalibacterium 
prausnitzii

[235]

Genus 
Roseburia

↓T2D
Roseburia intestinalis
↓T1DM

Anti-inflammatory
Roseburia intestinalis
Roseburia faecis

↑ Butyrate
R. cecicola, R. intestinalis, 
R. hominis

[22,74,235,236]

Genus 
Eubacterium

↓ T1DM (BBDP mice)
↓ T2D
Eubacterium rectale

↓ Insulin resistance
E. hallii

Anti-inflammatory
Eubacterium rectale

↑ Butyrate 
E. rectale, E. ventriosum, 
E. hallii

[235]

Genus
Ruminococcus ↑ T1DM (BBDP mice) Anti-inflammatory [27,235]

Phylum Bacteriodetes 
Genus 
Bacteroides

↓ T1DM 
↓ T2D ↑ Circulating Glucose Anti-inflammatory

B. fragilis [27,226,235]

Genus
Prevotella

↓ T1DM 
↓ T2D Anti-inflammatory ↓ Mucin [22,23,74,229,235,237]

Phylum Proteobacteria 

Genus
Escherichia ↑ T2D ↑ Insulin resistance

Pro-inflammatory 
E. coli k88
Anti-inflammatory
E. coli Nissle

[22,23,74,236,237]

Table 1: The role of gut microflora and their metabolites in diabetes, insulin signaling and inflammation.
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therapy regime coupled with a hydrolyzed casein diet prevented islet 
destruction through mechanisms involving the gut microflora [28]. 
These studies demonstrate how the gut microflora protect the cellular 
integrity of pancreatic β-cells, insulin production and the fundamental 
root of diabetes.

In neurodegenerative diseases, there are similar changes in the gut 
microflora. Like diabetes, AD and PD are associated with a general 
loss of microbial diversity [29,30] and shifts in the proportion of the 
dominant phyla, Firmicutes and Bacteroides. Up to 80% of PD patients 
suffer from GI dysfunctions linked to poor health of the gut microflora 
[31] and these GI effects are likely causative to disease development. 
There is also an overall increase in the pathobionts at the expense of 
symbionts characterized by an increase in Proteobacteria and other 
pro-inflammatory species with a decrease in Bifidobacterium [29,30,32] 
and Prevotella [33]. There have been several studies in germ-free 
mice investigating the impact of the microflora and specific probiotic 
treatments on neurological protection in aging. Several Lactobacillus 
(i.e. L. helveticus, L. rhamnosus, L. fermentum, L. plantarum, L. 
reuteri, L. acidophilus) and Bifidobacterium (i.e. B. animalis, B. breve. 
B.longum) probiotics that affect inflammatory and oxidative pathways 
also influence the production of neurotropic factors that ultimately 
provide protection against the onset of degeneration [34-36]. 

There are also several species that directly communicate with 
the vagal afferents in the enteric nervous system to directly effect 
neuronal activity in the brainstem. L. reuteri, L. rhamnosus and 
Bacteroides fragilis all activate vagal afferent signaling [37,38]. This 
is critical especially for PD development as vagal stimulation in the 
dorsal motor nucleus of the vagus (DMV) is one of the earliest affected 
regions for the accumulation of central α-synuclein pathology. Indeed, 
the microflora-produced metabolites propionate and butyrate also 
communicate with the brain in a vagal-dependent manner influencing 
DMV gluconeogenesis, cholinergic neuronal signaling (implicated in 
AD) and anti-inflammatory pathways [39].

Gut dysbiosis can be ameliorated by prebiotic or probiotic 
treatment. Prebiotics were shown to increase the level of species in 
the Bifidobacterium genus, an effect that positively correlates with 
improved glucose-tolerance, glucose-induced insulin secretion and 
reduced inflammatory markers [40,41]. In a diabetic-prone rat model 
(BioBreeding diabetes-prone rat; BBDP), transplantation of the 
probiotic L. johnsonii into the host ileum delayed disease progression by 
regulating the anti-inflammatory Th17 cell response [42]. L. acidophilus 
and L. casei probiotic therapy was also shown to elicit concatenate 
decreases in endotoxemia and oxidative stress markers in a diabetes rat 
model [43,44]. The potential benefit of probiotic treatment in multi-
faceted chronic diseases is immense as several disease pathways are 
simultaneously affected unlike conventional medicines where only one 
specific pathway is targeted. 

Gut Microflora affects Inflammatory State in Diabetes 
and Neurodegenerative Disease

Chronic low-grade inflammation and endotoxemia are major causes 
of age-related diseases and has recently been coined ‘inflammaging’ 
[45]. Many inflammatory pathways are dually implicated in both 
diabetes and neurodegeneration and are rooted in the dysbiosis of the 
gut [46]. There is ample evidence and several reviews have been written 
outlining the link of low-grade inflammation to T2D and AD so it will 
only be briefly outlined below [47,48].

Gut microbes, through lipopolysaccharide (LPS) and other 

surface signaling molecules, stimulate Toll-like receptors (TLRs) 
on innate immune cells initiating an inflammatory cascade by the 
cytokine-promoting actions of NFκB [49]. The high-fat mediated 
alterations to the gut microflora are correlated with a two-three fold 
increase in circulating LPS and a state of metabolic endotoxemia [50]. 
These inflammatory changes are inhibited by both TLR-4 knockout 
and antibiotic treatment against pro-inflammatory microbes [51] 
indicating the importance of the gut microflora in instigating diet-
induced inflammatory signals. Supporting this, TLR-4 stimulation by 
Gram-negative bacteria is critical for the development of high-fat diet 
induced insulin resistance [52] and siRNA-mediated knock-down of 
TLR-4 suppresses inflammation and insulin resistance triggered by 
LPS [53,54]. 

An alteration to the gut microflora by probiotic or prebiotic 
intervention is linked to reduced gut-induced inflammation. In 
particular, Lactobacillus and Bifidobacterium species are known to 
have potent anti-inflammatory actions (Table 1). In vitro, the gut 
supernatant from Bifidobacterium infantis ATCC 15697 was shown to 
reduce the release of TNFα and increase IL-4 concentrations secreted 
by macrophages [55]. In addition, there have been many animal 
and human trials investigating the role of probiotics in reducing 
inflammatory markers. One famous combinatorial probiotic VSL#3 
that contains four strains of Lactobacilli, three strains of Bifidobacteria 
and one strain of Streptococcus has shown great anti-inflammatory 
potential [56,57]. Refer to Table 1 for more specific evidence of the 
anti-inflammatory action of probiotics. 

Low-grade chronic systemic inflammation contributes to the 
development of insulin resistance, diabetes and obesity [58,59]. In 
both nonobese diabetic (NOD) and BBDP mice, certain probiotic 
and antibiotic regimes are effective in protecting mice against the 
onset of diabetes. These changes are correlated with marked changes 
in the gut microbial communities, partially attributed to the decrease 
in inflammatory markers [28]. In T2D, the majority of inflammation 
is derived in the adipose tissue from the activation of immune cells, 
possibly from the gut microflora. In humans, chronic low-grade 
endotoxemia increases the adipocyte release of cytokines promoting 
NFκB expression and insulin resistance [60]. It was later shown that 
gut-derived inflammation is linked to mechanisms of islet destruction 
[61]. The actual mechanisms of insulin resistance in the key tissues 
involved in diabetes (muscle, liver, adipose tissue) remain unknown, 
but it is certain that these mechanisms interact with inflammatory 
signaling from diet, obesity and the gut microflora. 

To demonstrate the importance of TLR signaling in diabetes, the 
knock-out of MyD88 (a key intracellular adapter molecules mediating 
TLR signaling) protected NOD mice from diabetes onset and decreased 
the autoimmune reaction against pancreatic β-cells in a microbe-
dependent manner. Indeed, MyD88 depletion is associated with a 
lower Firmicutes to Bacteroidetes ratio and an increased proportion of 
Lactobacilli, Rikenellae and Porphyromonadaeae [62]. 

There is no mystery that neurodegenerative diseases are highly 
correlated with systemic inflammation. In the PD brain, aggregation of 
proinflammatory factors with α-synuclein aggrevates the progression 
of dopaminergic cell death [63]. Indeed, direct injection of LPS into 
the brain will destroy dopaminergic neurons implicating a direct 
role for inflammation in neurodegeneration [64]. Similarly in AD, 
amyloid plaques activate various caspases and secondary signalers 
like NFκB and activator protein (AP)-1, which consequently amplify 
the cytokine proinflammatory response and induce apoptosis [65]. In 
addition, low-grade inflammation aggravates cognitive impairment 



Citation: Westfall S, Lomis N, Singh SP, Dai SY, Prakash S (2015) The Gut Microflora and its Metabolites Regulate the Molecular Crosstalk between 
Diabetes and Neurodegeneration. J Diabetes Metab 6: 577. doi:10.4172/2155-6156.1000577

Page 5 of 16

Volume 6 • Issue 8 • 1000577J Diabetes Metab
ISSN: 2155-6156 JDM, an open access journal

and proinflammatory cytokines co-aggregate with plaques and NFTs 
further promoting their neurotoxicity [66]. Finally, the neuroprotective 
ApoE protein is anti-inflammatory and was found to attenuate the Aβ-
plaque induced glial activation indicating the importance of mimizing 
neuroinflammation in the protection against AD [67].

The integrity of the gut intestinal barrier is critical to prevent an 
unprecedented pro-inflammatory response. Following this, diabetic 
animals have been shown to have compromised intestinal barrier 
integrity. In mice fed a high-fat diet, there is a reduction in the 
expression of tight-junction proteins including occudin and ZO-1 
thereby increasing gut wall permeability and circulating LPS levels [50]. 
In NOD and BBDP mice treated with probiotics, there is an increase 
in the tight-junction protein claudin coupled with reduced systemic 
inflammation outlining the importance of gut-derived action on 
mucosal barrier wall functionality in diabetes associated inflammation 
[28,42,68]. One study also identified that gut-microflora-mediated 
epigenetic changes to the TLRs in the gut epithelium could regulate the 
immune response affecting the diabetic phenotype [69]

Microflora-derived SCFAs Impact Diabetes and 
Neurodegeneration

Short-chain fatty acids (SCFAs) are the products of gut microbial 
fermentation of otherwise indigestible fibers. The SCFAs including 
propionate, acetate and butyrate are pertinent to regulating host 
energy metabolism, inflammatory state and levels of oxidative stress 
[70]. Butyrate interacts with the epithelial cells and provides energy 
whereas propionate and acetate enter the portal venous system and 
elicit more systemic effects. For example, propionate regulates hepatic 
lipogenesis and gluconeogenesis where acetate acts as a substrate for 
cholesterol synthesis [71]. In contrast, butyrate is associated with more 
anti-inflammatory actions via the inhibition of NFκB [72]. 

Butyrate

Butyrate preserves the integrity of the intestinal epithelial barrier, 
which is critical to prevent LPS-containing Gram-negative bacteria 
from transiting across the epithelial layer and initiating a systemic 
immune response [70]. To do this, butyrate increases the production 
of epithelial mucin, enhancing cell wall integrity [46]. Butyrate also 
activates GPR109A a signaling molecule expressed on the surface 
of intestinal epithelial cells associated with downregulating NFκB 
signaling and suppressing TNFα, IL-6 and IL-1β activation [46]. In 
humans, oral butyrate is beneficial in Crohn’s disease and ulcerative 
colitis indicating its potent anti-inflammatory action in inflammatory 
conditions [73]. 

As previously mentioned, diabetic patients have reduced levels 
Gram-positive butyrate-producing bacteria likely contributing to their 
disease pathology [74]. In T2D patients, there was a decrease in the 
butyrate Clostridiales bacteria (Roseburia and F. prausnitzii) with a 
greater amount of non-butyrate producing Clostridiales and pathogens 
such a C. clostridioforme [25]. Indeed, reduced butyrate is associated 
with endotoxemia, inflammation and the development of insulin 
resistance in mice [49]. To show this, mice supplemented with oral 
butyrate have improved insulin sensitivity and an increase in energy 
expenditure evidenced through improved mitochondrial function [75]. 

Butyrate also plays a role in protecting against neurodegenerative 
diseases. The mechanism is not fully elucidated however the histone 
deacetylase (HDAC) inhibiting activity of butyrate is deemed to be one 
factor. Recently, HDAC inhibitors have been linked to neuroprotective 
and neuro-regenerative roles in animal models of neurodegenerative 

diseases [76]. Indeed, amyloid pathology is correlated to a pronounced 
dysregulation of histone acetylation in the forebrain of an AD mouse 
model. Even when administered at a late stage of AD development, 
sodium butyrate improved memory impairment in these mice [77]. 
In PD, sodium butyrate was shown to alleviate pre-motor cognitive 
deficits in a 6-OHDA PD mouse model [78]. In another study, sodium 
butyrate reduced the degeneration of dopaminergic neurons in a 
mutant α-synuclein model of PD in Drosophila melanogaster. Further, 
sodium butyrate rescued the motor deficits, early mortality and loss of 
dopamine expression in the brain of rotenone-treated PD mice [79]. 
Although not thoroughly researched, the anti-inflammatory action of 
butyrate would also be protective against both AD and PD. 

Ferulic acid

Ferulic acid (FA) is an organic phenolic phytochemical naturally 
found in coffee, apple seeds, peanuts, rice, wheat and oats. It is also 
prominent in some Chinese and Indian medicines, namely the Chinese 
water chestnut (Eleocharis dulcis) and hing (asafoetida), respectively 
[80]. FA is a potent free radical scavenger, anti-apoptotic agent and 
anti-inflammatory agent. From the gut, FA is naturally produced via 
the intrinsic ferulic acid esterase (FAE) activity of select microbes 
including various species of Lactobacillus [81]. 

In various diabetes mouse models, FA works via several 
mechanisms to reduce blood glucose and increase plasma insulin 
levels [82]. In rats induced with diabetes, FA significantly improved 
blood glucose levels and oxidative status in the pancreatic tissues 
[82], to a similar extent as other oral anti-diabetic drugs such as 
metformin and thiozolidinediones (TDZs) [83]. In leptin deficient db/
db mice, FA increased plasma insulin, lowered blood glucose, increased 
hepatic glycogen synthesis and the upregulated the activity of the 
glucoceogenesis gene glucokinase [84]. FA extracted from Hibiscus 
leaves prevented insulin resistance by protecting insulin receptor 
integrity [85]. Applied daily for 8 weeks to Zucker diabetic fatty rats, 
a model of hyperlipidemia and hyperglycemia, the FA-producing 
L. fermentum reduced fasting insulin levels and insulin resistances 
indicating that the FA produced from probiotic bacteria is sufficient to 
improve conditions of diabetes [86]. 

FA reduces the harsh pro-oxidant conditions of neurodegeneration, 
diabetes and cardiovascular disease by restoring antioxidant gene 
and Hsp70 expression [80]. The main targets of FA in preventing 
oxidative damage include superoxide dismutase (SOD) and catalase 
(CAT); two enzymes critical to detoxify superoxide anions. In 
streptozotocin-induced diabetic rats, FA restored SOD and CAT levels 
in the myocardium and pancreatic tissue [82,87] while simultaneously 
reducing inflammatory markers and apoptosis in pancreatic β-cells 
[82]. Interestingly, FA in combination with fish oil was shown to reduce 
several oxidative markers, improve cognitive state and improve levels 
of dopamine [88] and other neurotransmitters in a 3-nitropropionic 
acid model of neurological damage [89].

In the brain, FA provides several neuroprotective effects including 
anti-inflammatory and anti-oxidant functions [80]. In neurons, 
FA inhibits peroxyl radical induced apoptosis and at higher doses 
prevented protein and lipid oxidation [90,91]. Indeed, in a glutamate 
toxicity model, FA completely inhibited apoptosis and the elevated 
caspase 3 and reduced Bcl2 levels [92]. In a rat model of cerebral 
ischemia, FA prevented apoptosis and iNOS induction, indicating 
that it is protective against external assaults. In aging rats, sodium 
ferulate supplementation counteracted the age-related increase in pro-
inflammatory cytokines [93].
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In several contexts, FA has been shown to directly alleviate AD 
pathology. FA dissolves Aβ plaques therefore preventing its toxicity 
both in vitro and in vivo [94,95]. In a transgenic AD mouse model, 
FA reversed memory deficits, decreased β-amyloid plaque deposits and 
reduced β-secretase activity and the consequent production of toxic A 
fragments. Also in this study, FA treatment was associated with attenuated 
neuroinflammation and reduced oxidative stress [96]. After injection of 
Aβ, FA treatment ameliorated IL-1β production, neuroinflammation 
and restored memory loss [94]. Similar anti-inflammatory and Aβ 
deposition reduction was noted in a transgenic APP/PS mouse model of 
AD coupled with enhanced cognitive performance [97]. FA was shown 
to directly inhibit the memory impairment of Aβ1-40 induced AD in 
rats while reversing the deterioration of anti-oxidative factors. FA also 
rescued the compromised acetylcholine esterase activity characteristic 
of the AD phenotype [98]. These effects are likely administered by the 
combined anti-inflammatory, anti-oxidative and enhanced choline 
acetyltransferase activity of FA [99]. 

Heat shock protin (Hsp)70 is a family of chaperone proteins that 
are strongly upregulated in response to stress and inflammation, which 
ultimately protect cellular integrity by supporting proper protein 
folding. In diabetes, the imbalance in the extracellular to intracellular 
Hsp70 can trigger a proinflammatory state and insulin resistance 
aggravating T2D development [100]. In neurodegenerative diseases, 
the accumulation of protein aggregates (Aβ in AD and α-synuclein 
in PD) is a principle pathology and HSPs have been found to be 
colocalized to these aggregates. Further, upregulation of Hsp70 (and 
other chaperones) can trigger the solubilization of protein aggregates 
both preventing and treating neurotoxicity. Hence, regulation of Hsp70 
may be beneficial for both diabetes and neurodegeneration. In this 
context, FAE was shown to upregulate Hsp70 in rat cortical neurons 
and prevented ROS and Aβ-induced neurotoxicity [101] indicating the 
functional ability of FA to regulation Hsp70 levels. 

Impact of Insulin, IGF-1 and GLP-1 Signaling in 
Neurodegenerative Disease

Insulin-like signaling (IIS) promotes many cell-protective and 
growth promoting pathways. In a healthy state, insulin signaling 
promotes neurogenesis in the CNS including synaptic maintenance, 
dendritic sprouting, cell growth, repair and neuroprotection [102,103]. 

Both the insulin receptor and the IGF-1 receptor, upon being 
activated by their respective ligand, undergo autophosphorylation and 
expose docking sites for the insulin receptor substrate (IRS). IRS binding 
and activation initiates a cascade of phosphorylation events beginning 
with phosphoinositide 3-kinase (PI3K) and Akt. Akt phosphorylates 
and largely inactivates its many targets that are proapoptotic (such as 
GSK3β) and proinflammatory (such as NFκB). Akt also phosphorylates 
and inactivates the Forkhead box (FOX)O transcription factor that 
subsequently promotes apoptosis. Finally, Akt also acts on p70s6k, a 
kinase that feedbacks back onto IRS-1/2 preventing its over-activation. 
These factors and others will be described in more detail below and 
how their regulation is important in the mutual regulation of diabetes 
and neurological disease. 

In both PD and AD, fundamental insulin signaling is impaired 
in the brain exacerbating neurological damage [102]. Cellular insulin 
signaling impacts numerous molecular cascades affecting apoptosis, 
production of inflammatory mediators, oxidative damage and others. 
In particular, there is evidence that insulin signaling directly implicates 
the specific proteinopathies of PD and AD. 

In AD, IlS regulates the metabolism of amyloid β plaques and tau 

proteins [47,104,105]. There is a strong colocalization of NFTs with 
the phosphorylated (and inactivated) IRS-1/2 receptors [106] directly 
associating diabetes pathology with exasperated AD. Also, the levels of 
phosphorylated IRS at its inhibitory residue are positively correlated 
with the concentration of Aβ plaques and NFTs and negatively 
associated with intracellular PI3K and Akt signaling activation 
[107,108]. The converse is also true, A aggregates have been suggested 
to trigger the removal of insulin receptors from the plasma membrane 
in cultured neurons further aggravating AD pathogenesis [109,110].

In PD, reduced IIS suppresses α-synuclein misfolding and 
neurotoxicity [17]. In the reverse, α-synuclein also interferes with 
the cytoprotective insulin signaling pathways by inhibiting protein 
phosphatase 2A activity, which protects insulin signaling. Over-
expression of α-synuclein increases IRS-1 phosphorylation, reducing 
Akt and mTOR signaling, the latter which negatively regulates IRS-1 
activity through S6K activity [111]. In the 6-OHDA model of PD in 
rats, there is severe striatal dopamine depletion manifesting in PD 
symptoms. In this model, there is a strong depletion of IRS coupled 
with increased inhibitory phosphorylation of the remaining receptors 
[112]. Also, silencing of PINK1 and Parkin, two key loss-of-function 
mutations in familial PD, increases the phosphorylation levels of the 
IGF-1 receptor impacting the downstream Akt and GSK3β signaling 
and aggravating PD pathology [113].

Insulin-like growth factor

Insulin-like growth factor (IGF) 1 is a hormone with similar 
structure to insulin, however IGF signaling leads to fewer metabolic 
effects and more greatly influences growth and proliferation. IGF 
release from the liver is controlled primarily by insulin hence IGF is 
also reduced in patients with diabetes. Activation of the IGF-1 signaling 
cascade potently induces Akt signaling pathways, a stimulator of cell 
growth and proliferation (see below). Clearly, reduced levels of IGF-
1 signaling in diabetes would have detrimental effects on pancreatic 
β-cell survival as well as neuronal cell integrity. 

Glucagon-like peptide

Glucagon-like peptide (GLP) is secreted primarily from the L-cells 
in the intestinal epithelial layer in response to dietary factors and 
indigestible fibers. Gut microbiota fermentation of prebiotics promotes 
L-cell differentiation in the proximal colon of rats and can upregulate 
the GLP-1 response up to two-fold in response to a meal in healthy 
humans [49,114]. Increased levels of Lactobacillus and Bifidobacterium 
species in the gut increase the secretion of GLP-1 from the intestinal 
L-cells in rats, preserve intestinal wall integrity, reduce endotoxemia, 
improve glucose-stimulated insulin secretion and lower oxidative 
markers [49,50]. The converse is also true as genetic or pharmacological 
deletion of GLP-1 prevents the beneficial effects of prebiotics on weight 
gain, glucose metabolism and inflammatory pathway activation. 

GLP is paramount for the incretin effect: the secretion of insulin 
in response to an oral glucose load. GLPs coordinately induce the 
glucose-dependent secretion of insulin, suppression of glucagon 
secretion while in parallel increase insulin sensitivity. In T2D patients, 
the incretin effect is reduced or even absent. To date, there are several 
incretin-based therapies (GLP-1 agonists) and the most popular are 
exenatide and liraglutide [115]. 

Diabetes-related treatments effective in treatment of 
neurological disorders

Many therapeutic strategies targeted to control glucose utilization 
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in T2D also protect against neurological damage in AD and PD [116-
119]. For example, nasal application of insulin improved mild cognitive 
impairment and reinstated the proper Aβ 1-40/1-42 ratio in the CSF 
of AD patients [120]. The subcutaneous administration of liraglutide, 
a GLP-1 receptor agonist that improves glucose homeostasis, also 
ameliorated AD-associated tau hyperphosphorylation in rats with 
T2D [121,122]. In a model of age-related sporadic AD, liraglutide 
lead to significant memory retention, prevented the development of 
phosphorylated tau and Aβ plaques and increased the total hippocampal 
neuron count indicating that this GLP-1 agonist not only prevents 
protein aggregates, but targets multiple aspect of AD pathology 
[123]. Exendin-4 is another GLP-1 agonist and when administered 
to mice with T2D, significantly reduced tau phosphorylation while 
upregulating brain IIS [124]. 

Similar effects were also reported in the 6-OHDA and LPS models 
of PD. Exendin-4 protected PD mice against loss of dopaminergic 
neuronal transmission, tyrosine hydroxylase activity and rescued 
motor function effectively preventing and even reversing the functional 
impairment in PD [125]. Likewise, in the MPTP toxin model of 
PD, Exendin-4 protected neurons against degeneration, preserved 
dopamine levels and improved motor function [126].

The association between therapeutic potential of diabetes 
and neurodegenerative disease is strong, indicating that there are 
deeply interconnected molecular signaling pathways between these 
pathologies. As will be investigated below, many of these pathways 
are related to the gut microflora and can be ameliorated by correcting 
dysbiosis in these populations. 

PI3K/mTOR/Akt Signaling Intersects Diabetes and 
Neurodegenerative Disease

The PI3K/Akt/mTor signaling axis is integral to most chronic 
age-related diseases including diabetes and neurodegeneration. In 
particular, normal aging critically depends on the tight regulation of 
these pathways, whose major input is insulin and IGF signaling [108].

Akt

Akt (protein kinase B) is a master regulator pivotal to the signaling 
network controlling glucose homeostasis, metabolism, apoptosis, 
cell growth and survival in response to insulin signaling. Deletion of 
Akt or the PI3K subunit in mice leads to the development of insulin 
resistance and T2D [127] and hepatic inactivation of these factors 
is sufficient to produce hyperglycemia and hyperinsulinemia (rev 
in[128]). Akt phosphorylates AS160 causing it to dissociate from 
the insulin-responsive isoform of the glucose transporter GLUT4 
located in intracellular storage vesicles, which facilitates its exocytosis 
to the plasma membrane. In this regard, Akt removes glucose from 
circulation and reduces hyperglycemia [129]. Akt also phosphorylates 
CRTC2, a CREB co-activator, that increases hepatic gluconeogenesis 
hence controlling the release of de novo glucose into the blood [130]. 
Akt also instigates a feedback regulation on the IRS. PDK1, the activator 
of Akt, phosphorylates and activates p70S6k, which consequently 
phosphorylates IRS inhibiting its activity (Figure 1). 

In terms of cell survival, Akt phosphorylation inactivates several 
proapoptotic proteins including Bad and GSK3β [131]. This pathway 
is evidenced in models of cerebral ischemia where PI3K/Akt activation 
suppresses pending neuronal cell death eliciting cell survival [132]. 
Even in PD, the ratio of active phosphorylated Akt to total Akt is 
reduced indicating that loss of active Akt leads to cellular degeneration 
[133].

The gut microflora also plays a role in regulating Akt signaling. The 
lipoteichoic acid (LTA) cell component on Gram-positive cell walls 
(similar to LPS on Gram-negative bacteria) activates Akt signaling and 
consequently downregulates GSK3β [134]. Further, many pathogenic 
bacteria interact with the Akt/GSK3β pathway to induce inflammation 
(rev in [135]). More specifically, when mice are fed the prebiotic 
oligofructose (a known enhancer of Bifidobacterium spp. populations), 
Akt and IRS activity were dually upregulated in a GLP-1-dependent 
manner [136]. Otherwise, the probiotic L. rhamnosus releases several 
peptides including p75 and p40 that act through the Akt and PI3K 
pathways to induce growth and cellular proliferation [137]. Finally, 
B. breve binds to immune cells and activates important downstream 
pathways through the TLR-2 receptor including PI3K and GSK3β 
[138]. Thus, not only does the gut microflora impact insulin and 
glucose signaling directly, it also modulates its action downstream by 
regulating its intracellular signaling. 

mTOR

The mammalian target of rapamycin (mTOR) is another signaling 
hub intersecting diabetes and neurodegeneration. mTOR is a nutrient 
and energy sensor and broadly affects many biochemical processes 
including translation, autophagy, transcription, cell growth and lipid 
synthesis (Figure 1). 

mTOR1 is a delicate regulator of glucose metabolism and diabetes 
development. Molecularly, mTOR is activated by nutrients and growth 
factors but also through insulin signaling via the PI3K/Akt pathways. 
mTOR1 phosphorylates and activates S6K1, which regulates insulin 
signaling via a negative feedback loop involving inhibitory IRS-1 
phosphorylation and eventual insulin resistance [139]. Likewise, the 
sustained activation of mTOR signaling in the AD brain was reported 
to cause IRS-1 inhibition, disabling normal activation of PI3K/Akt 
by insulin [140]. In one study, the deletion of S6K improved insulin 
resistance, enhanced IRS gene expression and prevented diabetes in 
mice [141]. mTOR1 activity has also been associated with promoting 
glucose uptake by upregulating GLUT4 expression [142]. 

mTOR activation through GLP-1 agonists promotes pancreatic 
β-cell proliferation via S6K activity and prevents neural apoptotic cell 
loss in T2D [143]. Likewise, rapamycin, the inhibitor of mTOR inhibits 
β-cell proliferation and induces β-cell apoptosis in obese animals by 
inhibiting glucose-stimulated insulin secretion [144]. There are some 
studies in which chronic treatment with rapamycin lead to insulin 
resistance, glucose intolerance and the development of diabetes [145] 
and where S6K1 deficient mice became hypersensitive to insulin [146]. 
This is attributed to the long-term effects of mTOR1 signaling and 
its effects on β-cell integrity. Chronic mTOR1 activation by glucose 
impairs IRS signaling which over time induces β-cell insulin resistance 
ultimately leading to β-cell failure [147,148]. In addition, as insulin 
signaling itself is a regulator of mTOR1, extensive insulin inhibition 
with consequently downregulates mTOR, reduces the protective mTOR 
signaling and insulin resistance featured in T2D [149]. Ultimately, 
the response to mTOR1 is biphasic: initially mTOR1 increases β-cell 
production and reduces insulin resistance while over time, chronic 
mTOR1 activation induces insulin resistance and hyperglycemia 
ultimately proving toxic to pancreatic β-cells [148]. 

In the CNS, mTOR plays a critical role in maintaining functionality, 
plasticity, metabolism and response to stress in post-mitotic neurons 
[108]. Of particular importance, mTOR is pinnacle in the regulation of 
proteostasis, the overall folding of cellular proteome, by regulating the 
balance of translation and autophagy. This regulatory process is key to 
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prevent the accumulation of toxic protein aggregates such as Aβ in AD 
and α-synuclein in PD [108,150]. Likewise, hyper phosphorylation and 
enhanced mTOR activity has been demonstrated in the early stages of 
AD [151]. Indeed, there are concatenate increases in the downstream 
factors activated by mTOR including 4EBP, p70S6K and GSK3β, the 
latter which implements tau phosphorylation and NFT pathology 
(see below) [152]. In post mortem AD brains, there are also elevated 
levels of phosphorylated mTOR along with increase expression of 
its downstream effector, p70S6K [153]. Another study noted that 
rats induced to have both T2D and AD had significantly higher 
memory impairment and tau protein hyperphosphorylation than 
those with either AD or T2D alone. Further, mTOR was reportedly 
hyperphosphorylated in both groups and it was proposed that the 
overactivation of mTOR in T2D and the corresponding impaired 
insulin signaling in the hippocampus increased tau phosphorylation 
and the prevalence of AD [154]. 

mTOR plays a similarly important role in PD pathogenesis, 
however in PD, there is a downregulation of mTOR activity, which 
leads to oxidative stress, locomotor abnormalities and mitochondrial 
dysfunctions [155]. Likewise, PD mimetics (6-OHDA, rotenone 
and MPTP) all reduced mTOR phosphorylation (by reducing Akt 
activity) while activating apoptotic pathways, an effect rescued with 
overexpression of mTOR, S6K or 4EBP [156]. Clearly mTOR plays 
many critical roles in CNS health and maintenance and its regulation 
remains highly sensitive between promoting healthy and disease states. 

Linking mTOR to the microflora it was shown in Drosophila 
melanogaster that one of its commensal bacteria, Lactobacillus 
plantarum was sufficient to reinstate a nutrient-rich signaling 
environment, even in an actual environment of starvation. This control 
of hormonal growth signaling upregulated mTOR and Akt signaling 
thus protecting the flies against aging [157]. It is not surprising that the 
microflora directly impact mTOR signaling considering that mTOR is 
a nutrient sensor and the gut microflora control nutrient availability 
to the host. 

FOXO

Forkhead box proteins of the O class (FOXO) are transcription 
factors that regulate pro-apoptotic genes, proliferation, autophagy, 
metabolism, inflammation and stress resilience [158]. FOXO 
inactivation depends on insulin signaling through the PI3K/Akt 
pathways where phosphorylation of FOXO by Akt relocalizes FOXO 
from the nucleus to the cytoplasm initiating its degradation. FOXO is 
an important transcriptional regulator of a conserved insulin response 
element (IRE: CAAAACAA) present in the promoters of several genes 
involved in glucose metabolism. These include the two rate-limiting 
enzymes for gluconeogenesis: phosphoenolpyruvate carboxykinase 
(Pepck) and glucose-6-phosphatase (G6P) [159]. Indeed, FOXO 
activation is necessary and sufficient for induction of hyperglycemia 
following insulin resistance or in T2D (rev in [128]). 

FOXO is activated by IlS and many of the longevity-enhancing 
effects of inhibited IlS is mediated by FOXO [150]. In diabetes, 
FOXO integrity is required to maintain proper glucose homeostasis 
and FOXO knockouts protect high-fat fed mice from developing 
T2D [160]. Notably, mice that overexpress FOXO1 have an impaired 
ability to regulate blood glucose levels [161]. FOXO also increases 
the expression of insulin-sensitizing genes, including the peroxisome 
proliferator-activated receptors or PPARs (see below) [162]. FOXO 
may transcriptionally repress the PPARγ promoter and possibly even 
repress PPARγ activity on the protein level [163]. FOXO also negatively 

regulates mTOR expression through the transcriptional upregulation 
of glutamine synthetase and AMPK upregulation [164,165].

In normal conditions, FOXO protects cells against oxidative stress 
and apoptosis [166] including preventing apoptosis in pancreatic 
β-cells [167]. FOXO transcribes SOD in the mitochondria (MnSOD), 
CAT and peroxiredoxin III removing superoxide radicals and oxidative 
stress associated with diabetes and neurodegenerative disease [168]. 
Under stressful conditions, such as extreme oxidative stress in diabetes 
or neurodegeneration, FOXO rather promotes cell death and can 
further increase ROS production [169]. The ability of FOXO to help cells 
cope with oxidative damage has made FOXO an important protective 
factor in the development of neurodegenerative disease. Indeed, the 
age-related FOXO expression has been related to the development of 
Aβ plaques and AD pathology both through its regulation of oxidative 
state and even direct regulation of Aβ plaque formation. One of the 
major mechanisms in the age-related decline of FOXO activity is the 
corresponding reduction in Hsp70 levels and autophagy, allowing 
proteotoxicity to grip neurons and lead to apoptosis [170].

Active FOXO creates a proinflammatory environment by 
transcribing proinflammatory cytokines (IL-1β, TLR4). High 
glucose, TNF and the LPS found systemically or on the cell walls of 
Gram-negative bacteria can activate the transcriptional activity of 
FOXO [169]. In connection to diabetes, LPS inhibits the ability of 
insulin signaling to inactivate FOXO activity, which may explain the 
exaggerated inflammatory response coupled with insulin resistance 
[171,172]. Akt provides an internal negative feedback regulation 
in FOXO-mediated inflammation. Although LPS increases FOXO 
activity, LPS also activates Akt, which in turn inhibits FOXO activity 
limiting its inflammatory action [173]. Also as previously described, 
mTOR feeds back to inhibit FOXO activation perpetuating the self-
limiting inflammatory cycle [165]. 

In PD, dopaminergic neurons are sensitive to the levels of 
FOXO. Likewise, in a recent profiling study, FOXO1 expression and 
its respective transcriptional targets were found upregulated in the 
prefrontal cortex of PD patients [173]. Constitutive activation of 
FOXO is proapoptotic while inhibition of FOXO leads to enhanced 
oxidative damage. However in the context of PD, mild FOXO activity 
prevented the accumulation of α-synuclein while complete inhibition 
was shown protective by preventing apoptosis [174]. In fruit flies, 
expression of the FOXO analog chico reduced lifespan and increased 
α-synuclein turnover [175]. Further, it was shown that FOXO activation 
ameliorated PINK1 loss-of-function mitochondrial damage and loss 
of dopamine in a Drosophila melanogaster model of PD indicating its 
potent neuroprotective effects [176].

Glycogen synthase kinase 3β 

GSK3β was originally identified for its ability to inhibit the activity 
of glycogen synthase and insulin receptors. In response to high 
levels of circulating glucose, GSK3β phosphorylates and triggers the 
ubiquitinylation and degradation of IRS1 promoting insulin resistance 
[177]. It was also found that GSK3β promotes gluconeogenesis in 
the liver thus aggravating hyperglycemia [178]. In diabetes, GSK3β 
expression is enhanced exasperating these detrimental effects. 
Competitive inhibitors of GSK3β increase glucose tolerance in mice as 
inhibited GSK3β activity should mirror the signaling action of insulin 
in diabetes by reducing glucose production and enhancing glucose 
storage. Likewise GSK3β inhibitors have been suggested as therapeutic 
targets for T2D [179].

Insulin signaling inhibits GSK3β activity through the PI3K/Akt 
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signaling pathway. In a T2D mouse model, Exendin-4, the GLP-1 
agonist, leads to the corresponding rise of PI3K/Akt signaling in the 
hippocampus and decline of GSK3β indicating the protective effects of 
GSK3β in diabetes [124]. GSK3β also phosphorylates and inactivates 
glycogen synthase-2, which reduces glycogen synthesis in muscle. 
This inhibition also leads to the activation of mTOR and S6K, which 
promote protein synthesis and cell growth [180].

GSK3β plays a significant role in neuroinflammation and 
neurodegeneration. GSK3β actually impacts many aspects of 
neurodegenerative development including inflammation, apoptosis, 
neurotransmitter receptor signaling, oxidative stress, taupathy, 
mitochondrial health and more (rev in [181]). In AD, GSK3β activity is 
significantly increased likely due to the ensuing insulin resistance in the 
brain [182]. GSK3β is thought to directly promote Aβ production and 
stimulate the production of NFTs [183,184]. One of the downstream 
phosphorylation targets of GSK3β is tau, whose hyper-phosphorylation 
leads to its increased aggregation [106,185]. Indeed, tau protein 
phosphorylation was reported increased in the brain of T2D rats and 
effectively reduced after Exendin-4 intervention. This was coupled 
with a rescued expression of PI3K and Akt and a decline in GSK3β 
activity indicating that GSK3β plays a role in tau phosphorylation in 
insulin-resistant brain [124]. Similarly in PD, GSK3β in post-mortem 
brains is enhanced and also colocalized with Lewy bodies indicating 
its possible pathological role [185]. In the 6-OHDA and MPTP 
models of PD, GSK3β is highly elevated and even actively disinhibited 
through protected phosphorylation events [186-188]. Interestingly, 
overexpression of α-synuclein corresponds to an increase in GSK3β 
suggesting that α-synuclein may cause enhanced GSK3β activity [189]. 

Regulatory action of ferulic acid in PI3K/Akt signaling

FA also imparts regulatory action on the PI3K/Akt and MAPK/
ERK signaling pathways [93,190]. The apoptotic activity of FA was 
completely inhibited in the presence of a PI3K inhibitor indicating 
that the anti-apoptotic effects of FA depend on the PI3K/Akt pathway. 
In addition, FA was shown to rescue the level of phosphorylated Akt 
and the downstream p70S6K in the glutamate toxicity model [92]. In 
terms of ERK, inhibition of ERK signaling in a model of glutamate 
toxicity partially abrogated the anti-apoptotic effect of FA [92]. 
Nevertheless, FA could prevent the decrease of ERK phosphorylation 
in the glutamate toxicity model, in a MAPK dependent manner [92]. 
Ultimately, through these pathways, FA effectively inhibits apoptosis 
activity by inhibiting caspase 3 activation and PARP cleavage. 

In another model, middle cerebral artery occlusion (MCAO), 
rats who simultaneously received FA did not experience a decrease in 
the levels of phosphorylated Akt or elevated GSK3β and FA further 
attenuated the increase in phosphorylated CRMP-2 indicating that 
FA should indeed elicit an effect on Akt, ultimately affecting the 
GSK3β/CRMP signaling pathway [129]. In the same model, it was also 
shown that FA rescued the attenuated levels of mTOR, p70S6K and 
S6 phorphorylation levels describing its neuroprotective role [191]. 
Finally, another study confirmed that FA attenuated the ischemic 
injury-induced inactivation of PI3K and Akt signaling thereby 
promoting neuronal survival via its anti-apoptotic actions on Bad 
expression [191].

Peroxisome proliferator-activated receptors

PPARs are a family of three nuclear receptors PPARα, β/δ, γ that 
are highly expressed in metabolically active tissues. In response to a 
series of signaling ligands, their role is to regulate lipid metabolism, 
glucose homeostasis and enhance the action of insulin [192]. Due to 

their metabolic actions PPARs are intimately involved in the pathology 
of both diabetes and neurological disease. 

One of the main ligands of PPARs are the essential fatty acids. 
Intriguingly, the gut microflora plays a prominent role in synthesizing 
and regulating fatty acids. In particular, the Bacteroidetes and Firmicutes 
phyla synthesize isomers of conjugated linoleic acid, a substrate of 
PPARs that erects anti-inflammatory action [193,194]. The probiotic 
Bifidobacterium breve is particularly efficient in this effect. Feeding B. 
breve to mice and pigs, there was not only significantly higher levels 
of EPA and DHA, but a reduction in inflammatory mediators, again 
possibly regulated through PPAR signaling [195]. 

Thiazolidinediones (TZDs), including rosiglitazone, are PPARγ 
agonists and many varieties are currently used as anti-diabetic drugs 
as they reduce insulin resistance and blood glucose levels in patients 
with T2D [196]. Interestingly, patients receiving such drugs were 
also protected from neurodegenerative pathologies. Indeed, PPARγ 
agonists promote neuronal development, protect cells from toxicity 
against various stresses and even protect neurons from Aβ toxicity 
and the accumulation of NFTs ultimately protecting the host from 
cognitive degeneration (rev in [197]). The PPARγ agonist LSN862 
were also shown to be protective against dopaminergic degeneration 
and inflammatory markers in the MPTP-model of PD [198]. Despite 
the abundance of clinical evidence, the precise mechanism PPARγ 
agonists’ action remains to be fully elucidated. PPARγ agonists are 
potent anti-inflammatory and anti-oxidant agents thus contribute to 
the joint action on both diabetes and neurodegeneration. Also, PPARγ 
agonists intersect with the PI3K/Akt/TOR and MAPK/ERK signaling 
pathways to affect the underlying pathology of disease development 
(Figure 2). TZDs increase Akt phosphorylation and activation in 
a PI3K dependent manner [199]. TZDs also inhibit GSK3β thus 
providing neuroprotection by reducing the risk of apoptosis. In 
addition, TZDs increase the phosphorylation of ERK1/2 two-fold and 
the neuroprotective action was shown to be conducted in a MAPK-
dependent manner [200]. 

PPARs do induce the transcription of PTEN, an inhibitor of Akt 
activation. Albeit contradictory to the previous discussion on diabetic 
and neurodegenerative protective effects of Akt activation, this 
inhibitory effect in dependent on cell type [199] hence may not affect 
signaling in neither the pancreas nor in neurons. In fact, one PPARγ 
agonist even decreased the ischemia-reprofusion elevated of PTEN 
levels in neurons indicating a more complex regulatory scheme [201]. 

PPARγ activity is directly regulated by the gut microflora. Species 
in the Bacteroides genus targets RelA, an NFκB subunit for cytoplasmic 
redistribution. PPARγ is also relocated along with it as PPARγ is 
found in complex with nuclear RelA and goes forth to promote anti-
inflammatory actions [202]. Post-transcriptionally, Enterococcus 
faecalis regulates PPARγ activity through phosphorylation resulting in 
its enhanced, yet transient, transcriptional activation [203]. Indirectly, 
SCFAs such as butyrate produced from the gut microflora activate 
PPARγ enhancing its beneficial effects on glucose homeostasis and 
anti-inflammatory potential [204].

Conclusion
Chronic diseases including diabetes, AD and PD have an integrated 

and multifaceted etiology coupled with prominent imbalances in the 
gut microflora communities. Despite distinct disease characteristics, 
diabetes and neurodegenerative disorders are often found comorbid 
and even aggravate the other’s severity linking each of these disorders 
to a common source. Hence, similarities in the kind of gut microflora 
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dysbiosis and correlated root causes like inflammation, metabolic 
stress and disrupted intracellular signaling indicate that maintaining 
a healthy gut environment is essential to prevent, treat and possibly 
reverse chronic disease. Probiotic and prebiotic treatment eradicate 
gastrointestinal dysbiosis and can ameliorate inflammatory, metabolic 
and molecular imbalances ultimately preventing or treating diabetes 
and neurodegenerative disease development. This opens the potential 
for new therapeutic approaches that incorporate gut microflora-
modifying agents like probiotics to simultaneously treat several aspects 
of these complex disease pathologies. In particular, fermentation 
products including butyrate and ferulic acid have broad effects on 
inflammatory, oxidative and PI3K/Akt/mTOR signaling pathways 
therefore treatment with probiotics known to secrete these metabolites 
would benefit disease outcome. 

Probiotics have vast potential for use in diabetes and other metabolic 
diseases as probiotics simultaneously target multiple aspects of the 
disease pathology. Through the mechanisms described above, probiotic 
therapies reduce insulin sensitivity, inflammation, oxidative stress and 
gastrointestinal distress thus ameliorating all major aspects of diabetic 
etiology. On the other hand, modern therapies including Metformin, 
Thiazolidinediones and GPL-1 agonists only affect insulin sensitivity or 
the secretion of insulin. The scope of these therapies is limited as they 
only influence the final manifestation of diabetes (insulin sensitivity) 
and do not address the underlying cause or the compounding action 
of inflammation, oxidative stress and gastrointestinal imbalances in 

diabetic patients. Hence, probiotics provide and novel and promising 
approach over conventional therapies to mitigate diverse aspects of 
diabetes possibly preventing or reversing the development of diabetes. 
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