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Abstract

In this paper the quantum hydrodynamic approach for the KGE owing a self-interaction term is developed both
for scalar and charged boson. The model allows to determine the quantum energy impulse tensor density of massive
bosons such as the mesons. The generalization of the hydrodynamic Klein-Gordon equation to the non-Euclidean
space-time is also derived for a quantum relativity approach.
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Introduction

Since theintroduction of the quantum wave equation by Schrodinger,
the quantum hydrodynamic approach (QHA) was presented by
Madelung [1]. In this quantum representation, developed by Madelung

and then by Bhom, the evolution of a complex variable ¥ =| | exp%S

is solved as a function of the two real variables, | 74 | and S [2-5]. As
shown by Weiner et al. [6], the outputs of the quantum hydrodynamic
model agree with the outputs of the Schrodinger problem and, more
recently, as shown by Koide and Kodama [7], it agrees with the outputs
of the stochastic variational method.

Recently, the author has shown that the hydrodynamic approach is
strictly correlated to the properties of vacuum on small scale [8].

Moreover, as shown by Bohm and Hiley [9,10] the hydrodynamic
approach can be generalized for the description of the quantum fields.

The present work develops the quantum hydrodynamic form of the Klein-
Gordon equation (KGE) containing an additional self-interaction term.

The interest in obtaining such a description lies in the fact that such
type of KGE can describe the states of bosons, such as mesons. The
goal of the paper is to obtain the energy-impulse tensor density of such
particles that can be useful in the coupling the field of a meson with the
Einstein equation [11]. The paper is organized as follows: in the section
2 the hydrodynamic KGE with a self-interaction term is derived for an
uncharged scalar particle as well as the Lagrangean motion equations
for the eigenstates and the associated energy impulse tensor density.. In
the subsection 2.2 the theory is developed for a charged field. In section
3. the formulas are generalized to a non-Euclidean space-time.

The Hydrodynamic KGE with Self-Interacting Field

In this section, the Euclidean hydrodynamic representation of the
KGE is derived for a scalar uncharged particle with a self-interaction
term that reads
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aV(’/’) and where, for instance, we assume the
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quartic renormalizable interaction Vip) = —z// *y = ||

where

Following the procedure given in reference [11,12] (for the
ordinary KGE) the hydrodynamic equations of motion are given by the
Hamilton-Jacobi type equation
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Moreover, being the 4-impulse in the hydrodynamic analogy
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it follows that
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Moreover, by using (6), equation (2) can be rewritten as
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and where P? = Pi Pi is the modulus of the spatial momentum.

As shown in reference [11], given the hydrodynamic Lagrangean
function
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equation (2) can be expressed by the following system of Lagrangean
equations of motion
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that for the eigenstates read
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Generally speaking, for eigenstates, for which it holds E=E =const
it follows that:
v,
m?c? (1 7_qu(;1) ]
me

En2 —p 2|_
C2 "
V, v,
- 02(1_ qu(;)]_mzyz 42(1— qu(;)J
mc mc

(17)

(where the minus sign stands for antiparticles) and, by using (17),
that

. lqu(n) E, .
Pny =xmy q,u 1 2 giﬂ (19)

Following the hydrodynamic protocol [11], the eigenstates are
represented by the stationary solutions of the hydrodynamic equations
of motion obtained by deriving Pi ¢ ;) from (14) and then inserting it

into (15) that leads to
L Yawin)
me?
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where, for eigenstates, the quantum energy-impulse tensor (QEIT)
Tny" reads [11,12],

2 %
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q /4 mc

leading to the quantum energy impulse tensor density (QIETD)
(11,12],
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where L=y |2 L is the (hydrodynamic) Lagrangian density and
L is the hydrodynamic Lagrangian function. Moreover, by using the
identity

Sy =inf Yy (24)
2i n

The QIETD (23) can be written as a function of the wave function
as following:
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In the case of a charged boson field, equations (1-3) read,
respectively,
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Moreover, with the help of (24,29,32-34) it follows that
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that, by using (24,29,34) we can express as a function of the wave
function as
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The above equations are coupled to the Maxwell one

Fyy -y = -4z J* (38)

(where Ju= %{z// *Dyy —yD,y¥)is the current of the charged
particles) where [14]

Fu = (A= Ay ) = (O - 004, ) (39)

and where

J Astrophys Aerospace Technol, an open access journal
ISSN: 2329-6542

Volume 5 « Issue 2 + 1000148



Citation: Chiarelli P (2017) The Hydrodynamic Representation of the Klein-Gordon Equation with Self-Interacting Field. J Astrophys Aerospace

Technol 5: 148. doi:10.4172/2329-6542.1000148

Page 4 of 5
i ( ) 4 (40) From (48) it follows that the motion equation reads
¢! Dy Ve ax_
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The quartic self-interaction is introduced in the KGE in order to ; I IEM 17%

describe the states of charged (+1) bosons (e.g., mesons) [15]. The
importance of having the hydrodynamic description of bosons [11] lies in
the fact that it allows to derive its quantum energy-impulse tensor that
can couple them to the Einstein quantum-gravitational equation [11].

The generalization of the quantum hydrodynamic formalism to
the non-Euclidean space-time can be obtained by using the General
Physics Covariance postulate [11,16]. By using it, it is possible to derive
the non-Euclidean expression of the hydrodynamic model of the KGE
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Equations (2-3) in a non- Euclidean space read, respectively,
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balance between the “force” of gravity and that one of the quantum
potential, leads to the stationary equation for the Eigen states
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transformation of the Galilean co-ordinates to non-Euclidean ones and
where &/i is the metric tensor defined by the quantum gravitational
equation [11]
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where the quantum energy impulse tensor density reads
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and where the cosmological energy-impulse density A [11], for
Eigen states, reads
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where, for scalar uncharged particles leads to
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Finally, it is worth noting that, as a function of the quantum field,
the quantum energy impulse tensor density reads
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Charged boson in non-Euclidean space-time

The KGE in non-Euclidean space-time for electromagnetic charged
boson
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Moreover, the Lagrangean motion equations read
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Conclusion

The hydrodynamic approach allows obtaining the quantum
energy-impulse tensor density as a function the field of the particle.

The biunique correspondence between the standard quantum
mechanics and the hydrodynamic representation [1-6,17] warrants
that the quantum energy-impulse tensor density can be independently
defined by the used formalism.

In this work the quantum energy-impulse tensor, for massive
bosons described by a KGE with self-interacting field is derived for
defining the coupling with the quantum gravitational equation.
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