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Introduction
Since the introduction of the quantum wave equation by Schrödinger, 

the quantum hydrodynamic approach (QHA) was presented by 
Madelung [1]. In this quantum representation, developed by Madelung 

and then by Bhom, the evolution of a complex variable ψ ψ=


i| | exp S

is solved as a function of the two real variables, ||ψ  and S  [2-5]. As
shown by Weiner et al. [6], the outputs of the quantum hydrodynamic 
model agree with the outputs of the Schrödinger problem and, more 
recently, as shown by Koide and Kodama [7], it agrees with the outputs 
of the stochastic variational method. 

Recently, the author has shown that the hydrodynamic approach is 
strictly correlated to the properties of vacuum on small scale [8]. 

Moreover, as shown by Bohm and Hiley [9,10] the hydrodynamic 
approach can be generalized for the description of the quantum fields. 

The present work develops the quantum hydrodynamic form of the Klein-
Gordon equation (KGE) containing an additional self-interaction term.

The interest in obtaining such a description lies in the fact that such 
type of KGE can describe the states of bosons, such as mesons. The 
goal of the paper is to obtain the energy-impulse tensor density of such 
particles that can be useful in the coupling the field of a meson with the 
Einstein equation [11].  The paper is organized as follows: in the section 
2 the hydrodynamic KGE with a self-interaction term is derived for an 
uncharged scalar particle as well as the Lagrangean motion equations 
for the eigenstates and the associated energy impulse tensor density.. In 
the subsection 2.2 the theory is developed for a charged field. In section 
3. the formulas are generalized to a non-Euclidean space-time.

The Hydrodynamic KGE with Self-Interacting Field
In this section, the Euclidean hydrodynamic representation of the 

KGE is derived for a scalar uncharged particle with a self-interaction 
term that reads

2 2

2
µ

µ ψψ ψ∂ ∂ = − +


( )
m c j                      (1)

where ψ
ψ ψ

∂
= −

∂
( )

( )
V

j and where, for instance, we assume the 

quartic renormalizable interaction 2 2 4
4 4ψ
λ λψ ψ ψ= =( )V * | |
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Following the procedure given in reference [11,12] (for the 
ordinary KGE) the hydrodynamic equations of motion are given by the 
Hamilton-Jacobi type equation

2 2 2 2 0
µ

µµν
µ ν

ψ
λ ψ

ψ

 ∂ ∂ ∂ ∂ − + − =
 ∂ ∂  


( q,t ) ( q,t )S S | |

g | | m c
| |q q

         (2)

coupled to the current equation [2]

2 0µ
µ µ µψ
  ∂∂ ∂
  = =
 ∂ ∂ ∂ 

JS| | m
q q q

                   (3)

where

S ln[ ]
2i *

ψ
ψ

=
                     (4)

and where

( )i
i *J c , J ( * )
2m q q

µ µ µ
ψ ψρ ψ ψ∂ ∂

= − = −
∂ ∂

                   (5) 

Moreover, being the 4-impulse in the hydrodynamic analogy

i
E Sp ( , p )
c q

µ µ
∂

= − = −
∂

                (6) 

it follows that 

2 µ
µ ρ ψ= − = −i

p
J ( c , J ) | |

m
                    (7) 

where

2

2
| | S

tmc
ψρ ∂

=
∂

                 (8) 

Moreover, by using (6), equation (2) can be rewritten as
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2 21µ
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where
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µ
µ ψ

λ ψ
ψ

 ∂ ∂ = − +
 
 


qu
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V | |

m | |
               (10) 

and where P2 = Pi Pi is the modulus of the spatial momentum.

As shown in reference [11], given the hydrodynamic Lagrangean 
function 
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equation (2) can be expressed by the following system of Lagrangean 
equations of motion
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q

                                                      (12)
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= −
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q
                                  (13)

that for the eigenstates read
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Generally speaking, for eigenstates, for which it holds E=En=const 
it follows that:
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from where it follows that
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(where the minus sign stands for antiparticles) and, by using (17), 
that

2 21µ µ µγ= ± − = qu( n ) n
n

V Ep m q q
mc c

                 (19) 

Following the hydrodynamic protocol [11], the eigenstates are 
represented by the stationary solutions of the hydrodynamic equations 
of motion obtained by deriving ì (q,q)p from (14) and then inserting it 
into (15) that leads to 
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where, for eigenstates, the quantum energy-impulse tensor (QEIT) 
ν
µnT  reads [11,12],

( )
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21ν ν ν ν
µ µ µ µ µ

ν
δ δ

γ
 ∂

= − = ± − −  ∂ 




qu( n )n
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VL mcq L u u
q mc
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leading to the quantum energy impulse tensor density (QIETD) 
[11,12],

2

2

ν ν
µ µ µ

ν

ν ν
µ µ µ
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δ ψ

δ ψ

∂
= − =

∂
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nn
n nn n

n
n n n

T q | |
q

Lq L | |
q

T

L L
                (23) 

where 2| | Lψ=L  is the (hydrodynamic) Lagrangian density and 
L is the hydrodynamic Lagrangian function. Moreover, by using the 
identity

2
ψ
ψ

=
 n

n
n

S ln[ ]
i *

                 (24)

The QIETD (23) can be written as a function of the wave function 
as following:
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Charged field 

In the case of a charged boson field, equations (1-3) read, 
respectively,
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2
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where the 4-current ìJ  reads
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(where µπ is the mechanical momentum) [11,13] and where
2
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tmc
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Moreover, analogously to (9,17-19), from (27) it follows that
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that leads to 
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that, by using (24), as a function of ψ  and ìA , reads
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Moreover, with the help of (24,29,32-34) it follows that
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that, by using (24,29,34) we can express as a function of the wave 
function as
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The above equations are coupled to the Maxwell one 

μ
μν ;νF = -4π J                 (38)

(where
2µ µ µψ ψ ψ ψ= −
J ( * D D *)
im

is the current of the charged 

particles) where [14]

 ( ) ( )∂ ∂μν ν;μ μ;ν μ ν ν μF = A - A = A - A                (39)

and where 
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φì
iA = ( , - A )

c
                     (40)

is the potential 4-vector, 

Non-Euclidean Generalization
The quartic self-interaction is introduced in the KGE in order to 

describe the states of charged ( 1± ) bosons (e.g., mesons) [15]. The 
importance of having the hydrodynamic description of bosons [11] lies in 
the fact that it allows to derive its quantum energy-impulse tensor that 
can couple them to the Einstein quantum-gravitational equation [11]. 

The generalization of the quantum hydrodynamic formalism to 
the non-Euclidean space-time can be obtained by using the General 
Physics Covariance postulate [11,16]. By using it, it is possible to derive 
the non-Euclidean expression of the hydrodynamic model of the KGE 
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Equations (2-3) in a non- Euclidean space read, respectively,
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Moreover, by using the definition of the Lagrangean function 
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Equations (45-46) leads to the motion equation 
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From (48) it follows that the motion equation reads 
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where the stationary condition 0µ =
du
dt

, that determines the 

balance between the “force” of gravity and that one of the quantum 
potential, leads to the stationary equation for the Eigen states
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where 21
νµ= = − ac| g | J

g
, where acJ  is Jacobean of the 

transformation of the Galilean co-ordinates to non-Euclidean ones and 
where í ìg  is the metric tensor defined by the quantum gravitational 
equation [11] 
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where the quantum energy impulse tensor density reads
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and where the cosmological energy-impulse density Λ  [11], for 
Eigen states, reads
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where, for scalar uncharged particles leads to
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Finally, it is worth noting that, as a function of the quantum field, 
the quantum energy impulse tensor density reads
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Charged boson in non-Euclidean space-time

The KGE in non-Euclidean space-time for electromagnetic charged 
boson 
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leads to the hydrodynamic system of equations
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and to the QIETD
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Conclusion
The hydrodynamic approach allows obtaining the quantum 

energy-impulse tensor density as a function the field of the particle.

The biunique correspondence between the standard quantum 
mechanics and the hydrodynamic representation [1-6,17] warrants 
that the quantum energy-impulse tensor density can be independently 
defined by the used formalism. 

In this work the quantum energy-impulse tensor, for massive 
bosons described by a KGE with self-interacting field is derived for 
defining the coupling with the quantum gravitational equation. 
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