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Abstract

Due to the effective antimicrobial properties of silver nanoparticles (Ag-NPs), these particles are receiving an
extensive interest for applying in wide range of consumer products and water purification systems. Entering the Ag-
based material in wastewater system can influence the biological cycle such as nitrogen. Denitrification as a part of
nitrogen cycle is an effective biological process in wastewater systems which can be affected by Ag-NPs. The
objective of this research was to study the impact of Ag-NPs on aerobic nitrate reduction. We showed that
Rhizobium sp and Azotobacter sp isolates were able to reduce nitrate aerobically. Adding 0.2 ppm of Ag-NPs in
culture medium of Azotobacter PHB+ enhanced the nitrate reduction activity about 20% and Ag-NPs at this
concentration has no significant effect on the nitrate reduction activity of periplasmic extracts of the selected isolates
in aerobic conditions. Thus, it seems that entering certain concentration of Ag-NPs in environments has no
significant impact on microbial aerobic denitrification as a certain part of nitrogen cycle.

Keywords: Silver nanoparticles; Denitrification; Nitrate reductase;
Bacteria

Introduction
Although Water is a source of life and considered as the most

essential natural resources, a growing number of contaminants are
entering water supplies from industrialization and human activity [1].
Since the 1970, contamination of groundwater by nitrate (NO3

-) has
become a great concern for human health and harmful effect on
environmental ecosystems due to carcinogenic influence and high rate
of accumulation in surface waters [2-4]. According to The European
Union and World Health Organization (WHO), drinking
contaminated water with more than 11.3 mg/l nitrogen are
considering as unsafe water source especially for infants [5]. Hence,
Nitrogen removal is one of the crucial step in wastewater treatment
and remediation of groundwater system contaminated with nitrate has
been extensively studied over last decades. Chemical methods for
nitrate reduction can be divided into two groups: nonspecific methods
in which many metals can reduce nitrate and methods designed for
nitrate decomposition [6]. Biological processes including microbial
denitrification is considered as other promising alternative for
remediation of nitrate methods [1,7]. Aerobic nitrate respiration as a
part of denetrification process has been detected in numbers of
facultative anaerobic heterotrophic bacteria such as Pseudomonas sp
[7]., Paracoccus pantotrophus [8]., Pseudomonas aeruginosa,
Rhodobacter sphaeroides f. sp. denitrificans [7,8]. Typically, Nitrate
reductase as one of major enzyme in aerobic nitrate respiration located
in periplasmic or cytoplasmic membran parts of denitrifiers [9].

Recent studies show that metal ion concentration is a critical
parameter that affects the ability of denitrifying bacteria to remove
nitrate and nitrite [10,11]. Over the past few decades, because of
antibacterial and remarkably unusual physical, chemical and biological
properties [12-15], silver nanoparticles (Ag-NPs) have been applied in
wide range of commercial product such as catalysts, electronics,

printing industry, Photographic manufacturing clothing, food
industry, paints, cosmetics products and medical consumptions
[16,17]. However, these wide ranges of applications of Ag-based
products caused an increasing in the risk of Ag- ions entering to the
aquatic environment including marine, water supplies, and waste-
water treatment systems. Therefore, Silver (Ag) can be a potential
pollutant in water environment due to its toxicity, chemistry and
bioavailability [12,18,19]. Few reports are available concerning the
interaction of Ag-based material and ions with environmental
bacterial communities [13]. Therefore, it is essential to consider
whether the entering silver compound and ions in the wastewater
system can impact the activity of biological processes or not. This
research aims to study the impact of Ag-NPs on the aerobic reduction
of nitrate, first step of the denitrification, in Azotobacter and
Rhizobium isolates. To our knowledge, the effect of Ag-based material
on denitrification has not been investigated yet. This study
demonstrates the aerobic reducrion of nitrate by Rhizobium sp and
Azotobacter sp isolates. Afterwards, the effect of Ag-NPs on the nitrate
reduction process catalyzed by native cells, cell free and periplasmic
extracts of selected strains was studied. In addition to, the bactericidal
activity of Ag-NPs on the studied bacteria was also evaluated.

Materials and Methods

Bacteria, preparation of media and nano-silver
Rhizobium A1, Rhizobium A3, Azotobacter PHB+ (previously

isolated from meliloti nodules and soil of Isfahan respectively) and
Escherichia coli ATCC 1339 (Gram negative model bacterium with
ability of anaerobic nitrate reduction) were obtained from the
Microbial culture collection of microbiological laboratory of the
University of Isfahan. All isolates were grown in the medium
containing the following g per liter: 0.5 KH2PO4, 0.5 K2HPO4, 0.2
MgSO4.7H2O, 3.0 CaCO3.2H2O, 0.001 MgSO4.5H2O, 1 yeast extract,
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0.1 NaCl and 10 glucose and consequently the pH of the medium was
adjusted to 7.5 [20].

Ag-NPs (average size: 40 ± 10 nm) was obtained from Nanocid
Company, Iran.

MIC and MBC assay of Ag-NPs
To evaluation the minimum inhibitory concentration (MIC) of Ag-

NPs on our strains, a serial dilution of Ag-NPs (0.25, 0.5, 1, 2, 4, 8
ppm) was prepared. 80 µl of sterile nutrient broth was added to 96-well
microtitre plates followed by adding 40 µl of different concentration of
nanosilver to each row of the microtitre plates. 80 µl of the bacterial
suspension (adjusted to 0.5Mac Farland level) was then added to each
row (resulting the final volume of 200 µl cell suspension for each well).
The microplate was sealed with plastic film and incubated at suitable
temperatures (28oC and 37oC) for 24 h according to each strain.
Minimal bactericidal concentrations (MBC) were determined by agar
plate method [21-23]. All experiments were performed in triplicate.

Growth in presence of Ag-NPs
Bacterial cell were exposed to Ag-NPs by inoculating desired

concentration of each strains (1.5×108 CFU/ml) of all strains in to
medium contained 25 ml nutrient broth supplemented by 0.01%
KNO3 and 0.2 ppm Ag-NPs. All of flasks were incubated at 28oC for
24 h with mild shaking (130 rpm). The process of nitrite assay was
carried out as described below. Growth of bacteria were monitored by
measuring optical density of cells at 600nm (OD600) over times.

Nitrite assay
The bacteria were grown in nutrient broth supplemented with

0.01% KNO3 at 28oC with mild shaking (130 rpm). Cells were
harvested by centrifugation (4,830g for 10 min) in sterile 50mL
centrifuge tubes. One ml of supernatant was transferred to 3 ml
cuvettes. Consequently, 0.02 ml of nitrite determination reagent was
added, mixtures were kept at room temperature for 15 min. The pink
color was measured spectrophotometrically at 540 nm against the
blank [24].

Nitrate reduction activity of native cells
The nitrate reduction activity of aerobically grown bacterial cells

was measured in the presence of nitrate (100 mg/L NO3--N). The cells
were harvested by centrifugation (10000 g, 10 min) at the middle of
their exponential growth (OD660 about 0.8), washed 3 times and re-
suspended in 0.1 M phosphate buffer, and pH 7.2. The concentration
of cell suspensions was adjusted to 1.0 (OD600) with 0.1 M potassium
phosphate buffer.

Five ml of each cell suspension was transferred into reaction tubes
and nitrate solution was added in final concentration of 30 mg/l NO3--
N. Afterward, the following conditions were conducted for each
isolates: (1) 0.5 g/l sodium thioglycolate and 0.2 ppm Ag-NPs were
added to suspension, (2) sodium thioglycolate free samples, (3)
nanosilver free samples, and also sodium thioglycolate and nanosilver
free controls.

The tubes were kept at room temperature for 60 min. Nitrite was
assayed in supernatant (harvested from biomass by centrifugation at
4,830 g for 10 min) as described before [5,11].

Nitrate reduction activity in cell free extract
Cytoplasmic enzyme were obtained by following procedure, fresh

biomass of cells were harvested from nutrient broth media containing
0.01% KNO3 by centrifugation (2683g and 30 min). Pellets were re-
suspended in 0.1M phosphate buffer, pH 7.2. Consequently, cells were
disrupted using an ultrasonic processor (GmbH VP200H) in (50 Hz, 7
times, 30s) in an ice-water bath). After bacterial cell disruption,
supernatant were separated by centrifugation (11180g, 15 min). One
ml of supernatant was exposed to nitrate solution with final
concentration of 30 mg/l NO3--N. Suspension was treated for nitrite
assay as mentioned in pervious part. The tube kept at room
temperature for 60 min. Nitrite was then assayed according to [25].

Preparation of periplasmic extract and nitrate reduction
activity

Bacterial cells were harvested using centrifugation at 4920g for 10
min and the supernatant were carefully removed from cells pellet.
Pellets were re-suspended in ice-cold extraction buffer (20 ml of 1X
TES buffer). Extraction buffer were contained: 0.2 M Tris-HCl, 0.5
mM EDTA, 0.5 M Sucrose. pH=8.00. Thirty three ml of 1/5 X TES was
mixed with obtained biomass from each liter of cell culture. The re-
suspended cells were kept on ice for 30 min. The obtained supernatant
was carefully transferred (containing periplasmic extract) to tube and
stored at -20 to -70oC for further analysis as mentioned above [26].
The activity of nitrate reductase was assayed as described above.

Results and Discussion

Screening of nitrate reductase positive-isolates
Denitrification typically occurs under anaerobic or anoxic

conditions [11,27-29]. In addition, microbially aerobic nitrate
reduction has also been reported by soil bacteria such as
Pseudomonas, Arthrobacter, Moraxella and Aeromonas [30-32]. In
this study, a comparative evolution in reduction of nitrate by different
strains of Rhizobium and Azotobacter showed that Rhizobium A1, A3
and Azotobacter PHB+ were the best strains in reducing nitrate
aerobically (Table 1). Further studies were carried out using these
strains.

MIC and MBC determination of Ag-NP
Cho et al. discovered the MIC of Ag-NPs for Staphylococcus aureus

and E.coli were 5 and 10 ppm, respectively [21]. In other research by
Kim [12], the antimicrobial activities of Ag ions and Ag-NPs against a
Gram-negative E. coli and a Gram-positive strain such as S.aureus
were investigated and they found silver ion-containing Ag NPss
having greater bactericidal activity against E. coli compared with
S.aureus. Petica et al. [33] showed that stable solutions containing up
to 35 ppm of Ag have significant antimicrobial and antifungal
properties [33]. Choi et al. showed that 0.5 mg/L Ag has the inhibitory
effect on the growth of E.coli PHL628-gfp in the forms of Ag NPs, Ag+

ions, and AgCl colloids by 5578%, 100%, and 6676%, respectively [11].
In this study, the bactericidal activity of Ag-NP on different soil
isolates with ability of nitrate reduction, Rhizobium and Azotobacter,
was determined. Exposing of these bacteria to different concentration
of Ag-NPs solution revealed that the growth of all strains was
completely inhibited at 8 ppm. In general, results showed that the MIC
of Ag-NP for Rhizobium and Azotobacter was 1 ppm and in case of
E.coli was 2 ppm (Table 2).
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Isolates Nitrite content (mg N/L) Isolates Nitrite content (mg N/L) Isolates Nitrite content (mg N/L)

Rhizobium 4R 0.05 Rhizobium PS2 5 Azotobacter P11 12.73

Rhizobium A3 11.52 Rhizobium A1 13.15 Azotobacter P81 0.05

Rhizobium 6R 6.36 Rhizobium Sin1 0.26 Azotobacter A1 0.1

Rhizobium A4 5.68 Rhizobium D1 0.1 Azotobacter D1 13.42

Rhizobium A2A 3.78 Rhizobium 1R 1.89 Azotobacter D2 0

Rhizobium A2B 10.1 Rhizobium 2R 11.36 Azotobacter PHB+ 14.82

Table 1: Comparative evaluation of nitrate reduction by different strains of Rhizobium, Azotobacter.

Briefly, it was found that 0.2 ppm of Ag-NPs had no effect on
growth of soil bacteria. Therefore, this concentration was applied as an
effective concentration of Ag-NPs for evaluation the effect of these
NPs on the responsible enzyme in reduction of nitrate which is one of
the key enzyme of nitrogen cycle.

Bacteria MIC MBC

Rhizobium A1 1 ppm 8 ppm

Rhizobium A3 1 ppm 8 ppm

Azotobacter PHB+ 1 ppm 8 ppm

E.coli 2 ppm 8 ppm

Table 2: MIC and MBC assay of Ag-NPs on different strains of
Rhizobium, Azotobacter and E.coli.

Effect of Ag-NPs on bacterial growth and Nitrate reduction
The effect of Ag-NPs on bacterial growth and nitrate reduction

activity in culture medium was investigated. We discovered that using
Ag-NPs in the concentration of 0.2 ppm had no significant effect on
nitrate reduction activity of Rhizobium A1 and A3. Interestingly, an
increasing up to 20% in the nitrate reduction activity of Azotobacter
PHB+ was observed in compare with untreated cell (Figure 1). An
increase in the amount of nitrite in these samples may be explained by
the role of some metals in nitrate reduction and also by the catalytic
properties Ag-based particles [6,34].

Figure 1: Comparative evaluation of effect of 0.2 ppm of Ag-NPs on growth of studied bacteria [2] and nitrate reduction rate (b).

Impact of Ag-NPs with Nitrate reduction in native cells
Kariminiaae-Hamedaani et al. and Pintathong et al. were studied

the nitrate reduction activity of native cells of Pseudomonas sp.
ASM-2-3 and Paracoccus pantotrophus P16 [5,11]. In our study,
aerobic reduction of nitrate in native cells of the strains was
investigated. To evaluate the effects of a reducing agent on reduction
potential of the studied strains, sodium thioglycolate was selected and
its effect with or without the presence of Ag-NPs was evaluated. Figure

2 represents that the nitrate reduction activity of the selected native
bacterial cell were still active after 60 minutes. Unlike E.coli, nitrate
reduction activity in soil isolates was not significantly affected by
sodium thioglycolate and even this activity was higher in the presence
of AgNPs in compared to the controls. A significant increase in the
activity of nitrate reductase of E.coli in the presence of sodium
thioglycolate suggested that it may provide a suitable reduced
condition for more efficient activity of this enzyme since it has been
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confirmed that this strain is not able simply to reduce nitrate in
aerobic condition.

Figure 2: Comparative evaluation of nitrate reduction in native
cells, cells treated with nanosilver and sodium thioglycolate, cells
treated by AgNPs, and cells without any treatments.

Impact of Ag-NPs with nitrate reduction activity in the cell
free and periplasmic extract compartments

Nitrate reductase activity in the cell free and periplasmic extract was
tested under aerobic conditions. Extracted enzyme from sonicated cell
showed a significant decreasing in activity in compare with blanks.
This can be related to the sensitivity of these enzymes to oxygen or
disturbing the appropriate order of the enzyme subunits in the
cytoplasmic membrane.

It has been found that periplasmic nitrate reductase play a main role
in aerobic nitrate reduction. To define the membrane-bound and
periplasmic nitrate reductase of bacteria such as Rhodobacter
capsulatus, Rhodobacter sphaeroides f. sp. denitrificans, Alcaligenes
eutrophus, Paracoccus denitrificans PD1222 and GB17, Pseudomonas
putida and Escherichia coli, the non-physiological electron donor (BV
+ and MV+) method have been applied. In this method by using non-
physiological electron donors such as benzyl viologen (BV+) and
methyl viologen (MV+) dyes, the location of enzymes responsible for
nitrate reduction can be determined. In whole-cell assays, BV+ acts as
an electron donor to both membrane-bound and periplasmic nitrate
reductases, whereas MV+ donates electrons mainly to the periplasmic
enzyme [30,35].

Periplasmic nitrate reductase has been characterized as a
responsible enzyme for aerobic nitrate reduction [5,34]. To our
knowledge, the effect of Ag-NPs on the activity of aerobic nitrate
reductase has not been investigated yet. Unlike the previous studies,
this study for the first time demonstrates the activity of periplasmic
nitrate reductase in the periplasmic extract of the cells. Interestingly,
we observed that all soil isolates (but not E.coli) have had significant
high periplasmic nitrate reductase activity in the presence of oxygen
while adding sodium thioglycolate had no significant effect on its
activity (Figure 3). Therefore our result showed that the presence of
thioglycolate and anaerobic condition is not necessary for activity of
this enzyme.

Increasing in the concentration of Ag-NPs up to 4 ppm caused a
40% decrease in enzyme activity of Rhizobium A1 (Figures 3 and 4).

Figure 3: Investigation of nitrate reduction activity in the
periplasmic extract of Rhizobium A1 in different conditions
including: (1) addition of Nanosilver and Sodium thioglycolate, (2)
sodium thioglycolate free samples, (3) nanosilver free samples and
(4) controls, without any treatment.

Figure 4: The periplasmic nitrate reductase activity of Rhizobium
A1 in presence of different concentration of Ag-NPs.

Conclusions
In conclusion, the Ag-NPs can enhance the activity of nitrate

reductase in native bacteria cells while have not such effect on cell free
extracted enzyme. According to our finding, periplasmic nitrate
reductase is responsible for aerobic nitrate reduction and specific
concentrations of nanosilver have no significant effect on this activity.
Therefore, the results of this study suggest that Ag-NPs at low
concentration (1 or 2 ppm) can be a promising biocide for applying in
recirculating wastewater treatment systems. In another point of view,
the results of this paper can be concluded that although entering low
concentration of Ag-NPs may not affect biological processes in
wastewater treatment systems, increasing in the concentration of Ag-
NPs calls for more extensive considerations. Moreover, this study
introduced an efficient method for extracting periplasmic nitrate
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reductase enzyme. This enzyme can apply for further applications in
wastewater treatment, applying in reduction of metals and formation
of nanoparticles and etc.
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