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Introduction
A longstanding paradigm in radiation biology has been that cell 

killing and carcinogenic effects of ionizing radiation are the result of 
DNA damage arising from the actions of ionizing radiation in the cell 
nuclei, especially by interactions of ionizing radiation and its products 
with nuclear DNA [1-3]. Consistent with this view, ionizing radiations 
undoubtedly damage DNA by directly ionizing DNA itself and by 
indirect processes in which DNA reacts with numerous radiolytic 
reactive products including H•, OH•, O2•¯ and H2O2, that are generated 
in aqueous fluid surrounding DNA [2,4,5]. Many attempts have been 
made to increase the effect of ionizing radiations by combining hypoxic 
cell sensitizers with radiation. Although successful in the experimental 
setup, clinical success has always been elusive, which has led to the use 
of alternative approach, where radiotherapy has been combined with 
chemotherapeutic drugs with a remarkable success to treat various 
malignant tumors [6,7]. Several chemoptherapeutic agents including 
cis-dichlorodiammine-platinum (II), 5-fluorouracil, mitomycin 
C, paclitaxel, docetaxel, topotecan, irinotecan, crytophycins, 
camptothecin and combretastatin A-4, and gemcitabine have been 
successfully combined with radiotherapy to treat difficult neoplasia [8-
15]. The use of chemotherapy in conjunction with radiotherapy proved 
beneficial in the treatment of solid neoplastic disorders in randomized 
clinical trials, however, it is fraught with consequences of high toxicity 
and development of second malignancies [16,17]. Therefore, newer 
approaches are required to alleviate the toxic side effects of combination 
regimens, and give optimum therapeutic benefits to the patients with 
good quality of life. 

With recent advances in molecular Radiation Biology, attempts 
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have been made to use target specific drugs including prenyl transferase 
inhibitors, ErbB receptor tyrokinase inhibitors and several others but 
with limited success [18]. Out of several molecular targets studied in 
an attempt to sensitize the cells to radiation, it is fairly well established 
that DNA damage plays a crucial role in determining the mechanism/s 
of action of anticancer drugs and ionizing radiations. It is therefore 
an imperative task in cancer therapy to determine the DNA-damaging 
action of antineoplastic and radiosensitizing agents on the normal as 
well as cancer cells [19]. The DNA damage at molecular level can be 
examined easily and precisely by single cell gel electrophoresis also 
known as comet assay, which was first performed by Östling and 
Johanson [20], followed by independent modification of the assay 
technique by Singh et al. [21] and Olive et al. [22]. In comet assay the 
cells are usually first embedded into agarose, lysed in alkaline buffer 
and finally subjected to an electric current. The electric current pulls 
the charged DNA out of the confines of nucleus, where the relaxed and 
broken DNA fragments migrate farther from the nucleus in comparison 
with the intact DNA that looks like a celestial comet and this analogy 
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MEM + sham-irradiation: The cells of this group were sham-
irradiated that is exposed to 0 Gy of γ-radiation.

BCL + sham-irradiation: This group of cells was treated with 1, 
2, 4, 6 or 8 μg/ml of BCL for 2 or 4 h before sham-irradiation (0 Gy).

MEM + irradiation: The cells set in agarose were exposed to 0.5, 1, 
2, 3 or 4 Gy γ-radiation.

BCL + irradiation: This group of cells was embedded in agarose 
and treated with 1, 2, 4, 6 or 8 μg/ml of BCL for 2 or 4 h before exposure 
to different doses of γ- radiation.

Irradiation
The slides embedded with cells in agarose were irradiated on ice 

using a Telecobalt therapy source (Theratron Atomic Energy Agency, 
Ontario, Canada). The γ-radiation was delivered at a dose rate of 1 Gy/
min. at a distance (SSD) of 91 cm. Ten cell embedded slides for each 
irradiation dose from both groups were placed on a flat glass plate in 
close thermal contact with ice and exposed to 0, 0.5, 1, 2, 3 or 4 Gy 
γ-radiation.

Assessment of DNA damage

The DNA damage was assessed by alkaline comet assay within 15 
minutes of exposure to 0, 0.5, 1, 2, 3 or 4 Gy γ-radiation.

Alkaline comet assay

The DNA damage at molecular level was determined using alkaline 
comet assay [21,43-45]. The frosted slides at one end were layered 
with 100 µl of 0.6% low melting agarose dissolved in Ca+2 and Mg+2 

free PBS at 37°C and a coverslip was placed over the molten agarose. 
The coverslips were removed after the congealing of agarose. Usually, 
1 × 105 HeLa cells harvested in one ml of MEM were pelleted by 
centrifugation at 1,500 rpm for 5 min. The cell pellets were resuspended 
in 80 µl of 0.6% low melting agarose spread on to the first layer, covered 
with a coverslip and allowed to solidify on ice. The whole procedure 
was carried out under a diffused light so as to avoid additional DNA 
damage. 

The cells set in agarose were treated or not with different 
concentrations of BCL as described above and irradiated on ice 
using a Telecobalt therapy source as described in irradiation section. 
Immediately after irradiation was over (within 15 min), these slides 
were transferred into cold lysis buffer containing 2.5 M NaCl, 100 mM 
Na2 EDTA, 10 mM Trizma base, pH 10 and 1% Triton X-100 (added 
fresh) and left undisturbed for 2 h in cold. This resulted in the complete 
removal of cellular proteins and left DNA as nucleoids. Once the cell 
lysis was over, the lysis buffer was decanted from the slides. These slides 
were transferred into a horizontal gel electrophoresis tank filled with 
a fresh electrophoresis buffer consisting of 300 mM NaOH, 1 mM 
Na2  EDTA, at pH 13.0, up to a level of ~0.25 cm above the slides and 
left undisturbed for next 20 min to unwind the DNA. The horizontal 
electrophoresis tank was connected to the power supply and slides 
were electrophoresed for 20 min at 1.25 V cm-1 and 300 mA in cold. 
The slides were pulled out from the electrophoresis tank and the buffer 
was allowed to drain off. The slides were then flooded gently with three 
changes of neutralization buffer (0.4 M Trizma base, pH 7.5) for 5 
min each and stained with 50 µl of ethidium bromide (2 mg/ml) and 
covered with a coverslip for immediate analysis. 

The data of molecular DNA damage were collected from each 
ethidium bomide stained slide at 40 X magnification under a 
fluorescence microscope as “comets” with a fluorescent head and a 

gives this technique the name comet assay [23]. The resulting comet 
images are acquired and analyzed under a fluorescence microscope to 
estimate the extent of lesion/s induced in the DNA [23-25].

Berberine is an isoquinoline alkaloid synthesized by various plants 
[3]. Berberine has been reported to exert anti-bacterial, anti-cancer, 
anti-depressant, anti-diabetic, anti-diarrheal, anti-inflammatory, 
anti-angiogenic and anti-arrhythmic activities [21,26-33]. Berberine 
administration has been shown to improve the cardiac performance 
in patients with heart failure in clinical trials and it also acts as a 
hypolipidemic [34,35]. It has been found to protect diabetic rats against 
cardiac dysfunction [36]. Berberine has been reported to protect against 
memory impairment in rats and also inhibit inflammatory colitis in 
mice [37,38]. It has been reported to exert anti-cholesterolemic activity 
[39,40]. An earlier study has indicated a significant reduction in tumor 
yield and tumor incidence in 2-stage skin carcinogenesis model in 
mouse administered with berberine [41]. Berberine was found to exert 
the anti-cancer activity in vivo, where it increased tumor free survival 
in mice transplanted with Ehrlich ascites carcinoma [29]. Berberine has 
been also found to inhibit growth of prostate cancer cells in vitro by 
inducing apoptosis and activation of Bax and caspase 3 [42]. The DNA 
damage induction is one of the important mechanisms of cell death. 
Therefore, the present study was undertaken to obtain an insight into 
the induction of molecular DNA damage in HeLa cells treated with 
berberine chloride before exposure to different doses of γ- radiation 
using comet assay.

Materials and Methods
Drugs and chemicals

Berberine chloride (BCL), fetal calf serum, Minimum Essential 
Medium (MEM), L-glutamine, gentamicin sulfate, normal and low 
melting agarose (Cat No. A-9418), Ethylene Diamine Tertra-Acetic 
Acid (EDTA), trizama base, ethidium bromide and triton X-100 were 
supplied by Sigma Chemical Co. St. Louis, USA. The other routine 
chemicals were obtained from Ranbaxy fine Chemicals, Mumbai, India.

Dissolution of drug

Berberine chloride was dissolved in sterile double distilled water 
(DDW) before use (at a concentration of 5 mg/ml), filter sterilized 
and diluted in sterile MEM in such a way so as to get the desired 
concentration.

Cell line and cell culture

The entire study was carried out in HeLa S3 cells with a doubling 
time of 20 ± 2 h. The cells were supplied by the National Centre for Cell 
Science, Pune, India. The cells were usually cultured in 25 cm2 culture 
flasks (Techno Plastic Products, Trasadingën, Switzerland) containing 
5 ml Eagle's minimum essential medium (MEM) supplemented with 
10% fetal calf serum, 1% L-glutamine and 50 µg/ml gentamicin sulfate 
with their caps loosened. The flasks were incubated at 37°C in a CO2 
incubator (NuAir, Plymouth, USA). in an atmosphere of 5% CO2 and 
95% humidified air.

Experimental protocol

Generally 5 × 105 exponentially growing HeLa cells were seeded 
into several culture flasks (Techno Plastic Products, Trasadingën, 
Switzerland) and allowed to grow until plateau phase. The cells were 
harvested by trypsin EDTA treatment, embedded into agarose (details 
are given in comet assay section) and were divided into the following 
groups according to the treatment:
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tail and the images [44,45] were acquired using an epifluorescence 
microscope (Olympus BX51, Olympus Microscopes, Tokyo, Japan) 
equipped with a 515-535 nm excitation filter, a 590 nm barrier filter 
and a CCD camera (CoolSNAP-Procf Digital Color Camera Kit Ver 4.1, 
Media Cybergenetics, Silver Spring, Maryland, USA). Generally one 
hundred cells from each slide were scored so as to give a representative 
result for the population of cells [46]. The comet images thus acquired 
by Azzam et al. [47] were analysed using Komet software (Version 5.5, 
Kinetic Imaging Ltd, Bromborough, UK). The mean olive tail moment 
(OTM) was selected as the parameter that best reflects DNA damage 
(defined as the distance between the profile centres of gravity for DNA 
in the head and tail). OTM was measured from three independent 
experiments, each containing quintuplicate measures and presented as 
Mean ± SEM. 

The potentiating factor (PF) was calculated by the following 
formula:

BCL IR BCLPF
IR SIR
+ −

=
−

Where IR = Irradiation; BCL = Berberine Chloride; SIR = Sham-
Irradiation.

Clonogenic assay
Another experiment was undertaken to estimate the relationship 

of molecular DNA damage with the clonogenicity of cells, where the 
grouping and other conditions were exactly similar to that described 
above except that stationary phase HeLa cells were inoculated into 
several culture flasks and the cells were treated with 1, 2 or 4 µg/
ml of BCL for four h before exposure to 0, 0.5, 1, 2, 3 and 4 Gy of 
γ-radiation. Immediately after irradiation, the medium from each 
flask of both groups was decanted and all the flasks were washed twice 
with sterile PBS before trypsin-EDTA treatment. The clonogenic 
assay was performed as described earlier [48]. Briefly, 300 HeLa cells 
were inoculated in quintuplicate in 25 cm2 petriplates (Techno Plastic 
Products, Trasadingën, Switzerland) for each exposure dose or each 
dose of BCL. The petriplates containing cells were transferred into a 

CO2 incubator and left undisturbed for 11 days for colony formation. 
The colonies thus formed were stained with 1% crystal violet in 
methanol and the cluster containing 50 or more cells were scored as 
a colony. The data thus obtained were fitted on to a linear quadratic 
model = exp-αD+βD² 

Statistical analyses
The statistical analyses were performed using Origin Pro 2015 

statistical software (Origin Lab. Corporation Northampton, MA, 
USA). The significance between the treatments was determined by 
one-way ANOVA and Bonferroni’s post-hoc test was applied for 
multiple comparisons. The results were confirmed by running repeat 
experiments at least twice. The results are the average of three individual 
experiments. The test of homogeneity was applied to find out variation 
among each experiment if any. Since the data of each experiment 
did not differ significantly from one another, all the data have been 
combined and means calculated. A p value of <0.05 was considered 
statistically significant.

Results
The results of DNA damage as mean olive tail moment (OTM) and 

cell survival are expressed in (Tables 1-3) and (Figures 1-5). 

Assessment of DNA damage by Comet assay
The DNA damage was evaluated by comet assay as a measure of 

DNA tail fragmentattion (OTM) immediately after irradiation in 
HeLa cells treated with 1, 2, 3, 6 or 8 µg/ml BCL for 2 h or 4 h before 
exposure to different doses of γ–radiation (Figure 1). HeLa cells treated 
with different concentrations of BCL either for 2 h  or 4 h caused an 
increase in the tail DNA (OTM) in a BCL concentration dependent 
manner and the greatest DNA damage was observed in the cells that 
received 8 µg/ml BCL treatment (Figure 2). The DNA damage was 
greater in the cell treated with BCL for 4 h than that of to 2 h (Table 
2). The γ –irradiation of HeLa cells to 0, 0.5, 1, 2, 3 or 4 Gy resulted 
in a significant rise in the migration of framented DNA into comet 
tails leading to a subsequent increase in OTM (p < 0.001) in the MEM 
+ irradiation group when compared with non-drug treated sham-

Berberine chloride Olive Tail Moment (Mean ± SEM) Linear correlation
(µg/ml) Exposure dose (Gy) (r2)

0 0.5 1 2 3 4
0 0.76 ± 0.06 1.13 ± 0.08 2.84 ± 0.02 4.58 ± 0.04 5.84 ± 0.06 8.22 ± 0.07 0.97
1 2.14 ± 0.05 4.13 ± 0.05 6.51 ± 0.03 8.12 ± 0.06 11.13 ± 0.03 15.13 ± 0.03 0.98
2 5.14 ± 0.04 7.34 ± 0.01 9.54 ± 0.06 11.87 ± 0.04 12.59 ± 0.02 16.72 ± 0.05 0.96
4 8.11 ± 0.08 10.15 ± 0.02 12.08 ± 0.05 14.07 ± 0.03 18.15 ± 0.02 22.05 ± 0.06 0.99
6 11.11 ± 0.04 17.18 ± 0.02 19.26 ± 0.05 23.20 ± 0.04 25.75 ± 0.07 30.32 ± 0.06 0.89
8 23.23 ± 0.07 26.34 ± 0.04 29.57 ± 0.03 34.17 ± 0.05 42.82 ± 0.08 54.21 ± 0.03 0.98

p<0.001 BCL + irradiation group compared to MEM + irradiation group

Table 1:  Alteration in the radiation-induced DNA damage in HeLa cells treated with berberine chloride for 2 hours before exposure to various doses of γ-

Berberine chloride Olive Tail Moment (Mean ± SEM) Linear correlation
(µg/ml) Exposure dose (Gy) (r2)

0 0.5 1 2 3 4
0 0.84 ± 0.04 1.32 ± 0.05 3.62 ± 0.02 6.55 ± 0.04 9.88 ± 0.09 12.27 ± 0.06 0.99
1 4.11 ± 0.02 5.05 ± 0.05 6.34 ± 0.04 8.14 ± 0.07 12.87 ± 0.06 15.23 ± 0.04 0.99
2 8.21 ± 0.06 10.86 ± 0.06 12.34 ± 0.04 13.42 ± 0.03 15.93 ± 0.07 19.09 ± 0.01 0.98
4 10.55 ± 0.04 13.43 ± 0.05 16.26 ± 0.06 18.16 ± 0.04 21.17 ± 0.08 25.35 ± 0.04 0.98
6 15.34 ± 0.03 19.14 ± 0.05 22.64 ± 0.04 26.18 ± 0.02 30.23 ± 0.06 35.10 ± 0.03 0.98
8 35.12 ± 0.06 38.23 ± 0.04 42.11 ± 0.03 45.24 ± 0.04 50.52 ± 0.06 53.12 ± 0.04 0.97

p<0.001 BCL + irradiation group compared to MEM + irradiation group

Table 2:  Alteration in the radiation-induced DNA damage in HeLa cells treated with berberine chloride for 4 hours before exposure to various doses of γ-radiation.
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irradiation control (Figure 2). The expsoure of HeLa cells to various 
doses of γ-radiation caused an irradiation dose dependent accrual in 
the DNA damage as indicated by increasing migration of DNA into 
comet tails (Tables 1 and 2) and the highest DNA damage was scored 
in cells irradiated to 4 Gy of γ-radiation in MEM + irradiation group 
(Figure 2). The treatment of HeLa cell with 1, 2, 4, 6, or 8 µg/ml BCL 
for 2 h led to a significant increment in the DNA damage (OTM) 
and the quantitty of DNA damage elevated with rising concentration 
of BCL as well as increasing dose of irradiation (Table 1) in BCL + 
irradiation group (Figure 2). The DNA damage was greater in the cells 
treated with different concentrations of BCL for 4 h (Table 2) than 2 h 

in BCL + irradiation group (Table 1). The greatest DNA damage was 
discerned in the cells treated with 8 µg/ml BCL and then exposed to 4 
Gy γ-radiations in comparison to other concentration of BCL and 0.5-
3 Gy of radiation (Figure 2). The dose response relationship was linear 
for both cells treated for 2 or 4 h BCL and then exposed to different 
doses of γ-radiation (Figure 2). 

The determination of potentiating factor of BCL revealed 
that potentiating factor was consistently higher for 6 and 8 µg/
BCL at all exposure doses in HeLa cell that were treated to BCL 
for 2 h before exposure to different doses of γ-radiation (Table 3). 
Similarly, a maximum potentiating effect was obtained for all BCL 
concentrations in the cells exposed to 0.5 and 1 Gy when compared 
to higher irradiation doses (Table 3), despite the fact that absolute 
values of OTM were higher in the cells treated with different doses of 
BCL for 4 h before exposure to different doses of γ-radiation (Tables 
1 and 2).

Clonogenic assay

Figure 3 shows representative images of clonogenic assay in HeLa 
cells. Treatment of HeLa cells with 1, 2 or 4 µg/ml BCL for 4 h reduced 
the cell survival and a greatest reduction in the cell survival was detected 
for 4 µg/ml BCL (Figure 4). Irradiation of HeLa cells to various doses 
of γ-radiation led to an increasing reduction in the cell survival (Figure 
4). This attrition in cell survival was greater for 0.5 and 1 Gy when 
compared to the 2, 3 and 4 Gy γ-radiation (Figure 4). A further decline 
in the survival of HeLa cells was detected after treatment with 1, 2 or 4 
µg/ml BCL for 4 h before exposure to different doses of γ-radiation in 
BCL + irradiation group when compared to MEM + irradiation group 
(Figure 4). The maximum decline in the cell survival was registered in 
the cells treated with 4 µg/ml BCL in BCL + irradiation group (Figure 
4). The data fitted on the linear quadratic model.

Exposure Berberine chloride treatment (h)
dose 2 4
(Gy) Berberine chloride (µg/ml) Berberine chloride (µg/ml)

1 2 4 6 8 1 2 4 6 8
0.5 5.38 5.95 5.51 16.4 8.4 1.96 5.52 6 7.92 6.48

1 2.1 2.11 1.91 3.92 3.05 0.8 1.49 2.05 2.63 2.51

2 1.56 1.76 1.56 3.16 2.86 0.7 0.91 1.33 1.9 1.77

3 1.77 1.47 1.98 2.88 3.86 1.09 0.85 1.17 1.65 1.7

4 1.74 1.55 1.87 2.57 4.15 0.97 0.95 1.29 1.73 1.57

Table 3: Potentiating factor for various concentrations of berberine chloride in HeLa cells exposed to different doses of γ- radiation.

 

Figure 1: Representative comet images of HeLa cells treated with berberine 
before exposure to γ-radiation. Upper image berberine + radiation showing 
damaged DNA as a comet and lower image: undamaged HeLa cell.

Figure 2: Effect of different concentrations of berberine hydrochloride on the 
molecular DNA damage in HeLa cells exposed to different dose of γ-radiation 
as assessed by comet assay. Squares: MEM + irradiation; Circles: 1 µg/ml 
BCL + irradiation; Triangles: 2 µg/ml BCL + irradiation; Hexagones: 4 µg/ml 
BCL + irradiation; Diamonds: 6 µg/ml BCL + irradiation; and Stars: 8 µg/ml 
BCL + irradiation. Left: BCL treatment for 2 h before irradiation and Right: BCL 
treatment for 4 h before irradiation.

Figure 3: Representative images of clonogenic assay in HeLa cells treated with 
berberine chloride before irradiation. Left: Sham-irradiated and right 4 µg/ml 
berberine chloride + 4 Gy irradiation.
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Biological response

The correlation between the molecular DNA damage and cell 
survival was determined by plotting molecular DNA damage on Y 
axis and cell survival on X-axis (Figure 5). The cell survival declined 
with increasing molecular DNA damage (Figure 5) indicating that 
the cell survival is directly related to the molecular damage to DNA. 
The greater was the damage to DNA higher was the cell kill (Figure 
5). The relationship between DNA damage and cell survival was linear 
quadratic (Figure 5).

Discussion
Natural products have drawn the attention of human beings for 

healthcare since time immemorial and they have been traditionally 
used as remedies due to the popular belief that they are non-toxic 
or produce fewer adverse side effects [49]. Therefore, it is essential 
to determine the beneficial or adverse influence of natural products, 
which are extensively used by humans, especially to implement public 
health safety measures. Development of resistance after administration 
of different chemotherapeutic drugs is generally a major stumbling 
block in successful chemotherapy of cancer and usually it is extremely 
difficult to prognosticate the degree and timing of the appearance of 
tumor resistance in most chemotherapy regimens [50,51]. Modern 
developments in the single-cell gel electrophoresis or 'comet' assay 
to estimate DNA damage at the single-cell level indicate that this 
technique might provide a useful method in identifying and potentially 
monitoring the response of tumor cells to numerous chemotherapeutic 
agents including radiotherapy in situ [52]. Technically comet assay can 
be applied to any tumor undergoing chemotherapy that cause overt 
DNA damage and is accessible for sample collection. The comet assay 
or single-cell gel electrophoresis assay is a simple technique that may 
use for brisk estimation and quantitation of DNA damage from single 
cells [23,25,43,45,53]. The comet assay is based on lysis of labile DNA 
at sites of damage in the alkaline condition. Cells are immobilized 
in a thin agarose matrix on slides and gently lysed and subjected to 
electrophoresis, where the unwound and relaxed DNA comes out of 
the cells. After staining with a nucleic acid stain, the cells that have 
accumulated DNA damage appear as fluorescent comets, with tails of 
DNA fragmentation or unwinding [23,25,45].

In radiobiology, there is always a need for the development of 
new rapid and more sensitive techniques for DNA damage evaluation 
[25,54]. The comet assay, also called single-cell gel electrophoresis 
(SCGE) assay is a method of choice because it is a rapid and sensitive 
method for the detection of various DNA damages (strand breaks and 
alkali-labile sites) in individual cells, induced by a variety of genotoxic 
agents including ionizing radiations [23,25]. Radiation may cause SSB, 
DSB, DNA-DNA as well as DNA-protein crosslinks and damage to 
bases, which can be detected by comet assay and hence this method 
could provide information on any type of DNA damage caused by 
ionizing radiations. This is not the case for standard cytogenetic 
methods that provide only average DNA damage information [24].

Radiation therapists would like to have a tool that allows the 
quantitative assessment of radiosensitivity of normal tissues. Comet 
assay is one such method that allows estimation of DNA damage in 
short duration and may allow precise treatment planning of cancer 
patients undergoing radiotherapy or chemotherapy or both. DNA 
damage and consequent cell killing are the main effects on cells after 
exposure to ionizing radiation. The first effect can be measured by 
comet assay and the second by evaluating the reproductive integrity 
using clonogenic assay [25,44,48]. Meanwhile, research has identified 
quite a number of factors that affect individual’s radiation sensitivity 
including the cells’ ability to repair DNA damage. The results from 
the present study show that with increasing BCL concentration and 
irradiation dose the possibility of DNA repair constantly dwindled 
as evidenced by the reduced clonogenicity of HeLa cells. A similar 
observation has been made earlier [43,45,55]. Berberine treatment 
of HeLa cells has been reported to up regulate Fas, FasL, TNF-α and 
TRAF-1 which are invoved in the activation of death receptor and 
apoptosis causing reduced survival [56].

Treatment of HeLa cells with 1-8 µg/ml BCL before exposure to 

Figure 4: Effect of different concentrations of berberine chloride on the 
survival of HeLa cells exposed to different doses of γ-radiations. Squares: 
MEM + irradiation; Circles: 1 µg/ml BCL + irradiation; Triangles: 2 µg/ml BCL + 
irradiation and Pentagones: 4 µg/ml BCL + irradiation.

Figure 5: Correlation of molecular DNA damage with clonogenicity of HeLa 
cells treated with different concentrations of berberine chloride before exposure 
to different doses of γ-radiation. Upper left: MEM + irradiation; Upper right: 1 µg/
ml BCL + irradiation; Lower left: 2 µg/ml BCL + irradiation and Lower right: 4 µg/
ml BCL + irradiation.
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different doses of γ-radiation increased the OTM in BCL concentration 
and radiation dose dependent manner and this rise was significantly 
greater in BCL pretreated group when compared with the concurrent 
non-BCL treated irradiated control. The accelerated DNA migration 
in HeLa cells after BCL treatment prior to γ-irradiation may be a likely 
a sum of genotoxic or cytotoxic effect of BCL. In our earlier study 
berberine treatment increased molecular damage to DNA in HeLa cells 
in a concentration dependent manner [45]. The radiosensitizing effect 
of BCL on HeLa cells may be due its ability to inflict the molecular 
damage to cellular genomic indicated by a steady increase in the OTM 
after BCL treatment before irradiation. Berberine was found to induce 
DNA fragmentation in human leukemic HL-60 cells earlier [26]. The 
DNA damage elevated with increase in BCL treatment time in the 
irradiated group. However, the potentiating factor was higher in the 
cell treated with BCL for two hours before exposure to different doses 
of γ-radiation despite the fact that absolute DNA damage was greater 
in the cells treated with BCL for 4 h (Table 3). This may be due to the 
fact that increasing incubation of HeLa cells with BCL, the BCL per se 
induced higher DNA damage reducing the potentiating factor, which is 
clear from the data presented in the (Tables 1 and 2). It is conspicuously 
clear that low doses of radiation had greater sensitization and cell killing 
ability than the higher doses of radiation. This observation is clinically 
significant as the fraction size of radiation for cancer treatment may be 
reduced, indicating that its clinical application may reduce the adverse 
effect of radiotherapy and at the same time bringing out effective tumor 
control if berberine is administered before irradiation. This was evident 
also in the clonogenic assay where low doses provided more cell killing 
effect in BCL + irradiation group.

Earlier reports suggest that increased DNA damage is the hallmark 
of cell death and the increasing DNA damage caused a corresponding 
reduction in cell survival [43-45,55,57-59]. This is also clear from 
the biological response data that clearly indicate that increasing 
OTM actually reduced the clonognenicity of HeLa cells (Figure 3). A 
similar effect has been reported earlier [43-45,55,57,58]. Our results 
indicate that BCL pretreatment did not allow repair and the amount 
of DNA damage actually increased with increasing concentration of 
BCL and radiation dose, which is translated into cell killing. Likewise, 
1-methylxanthine has also been reported to disallow repair of DNA 
strand breaks in RKO human colorectal cancer cells [60].

The exact mechanism by which BCL enhanced the radiation-
induced DNA damage is not well understood. The increased DNA 
damage by BCL may not be due to a single mechanism but several 
putative mechanisms may have acted independently or in concert with 
each other to bring this effect. Ionizing radiation interacts with cellular 
genome by induction of OH free radicals [4,5,61] and presence of 
BCL would have further enhanced the induction of radiation-induced 
reactive oxygen species (ROS) resulting in the augmented radiation-
induced DNA damage. BCL actually induces reactive oxygen species 
[62,63] that supports this contention. Ionizing radiations have been 
reported to cause single and double strand breaks in DNA sugar and 
base damage as well as protein crosslinks [3,64]. The double strand 
breaks are considered cell lethal and the main causative factor of cell 
death [3,65,66]. The presence of BCL before irradiation might have 
minimized the chances of DNA repair thus bringing effective killing 
of cells. The berberine has been reported to inhibit DNA repair 
mechanisms earlier [31]. Lipid peroxidation and lipid peroxides 
produce excessive damage to the cell DNA [66] and BCL would have 
increased the radiation-induced lipid peroxidation in HeLa cells thereby 
increasing DNA damage further. We have observed that BCL actually 
increases radiation-induced lipid peroxidation in cultured HeLa cells 

(data not shown). The topoisomerases are involved the transcription, 
recombination, DNA repair and chromatin remodeling [67]. The 
presence of BCL before irradiation may have suppressed the action of 
topoisomerase II, which may have caused an elevation in the radiation-
induced DNA damage in BCL pretreated group in comparison with 
non-drug treated irradiation group. The increased OTM can originate 
from stabilization of topoisomerase II, which can introduce DNA 
strand breaks when it interacts for a prolonged time with the action 
of free radicals [67,68] which may have been generated by irradiation. 
An earlier study has reported that berberine treatment caused 
internucleosomal DNA fragmentation resulting in the formation of 
a complex with DNA that inhibited topoisomerase II enzyme in vitro 
[69]. A relationship between topoisomerase II and radiosensitivity has 
also been reported [70]. Apart from these mechanisms, operation of 
other molecular mechanisms including inhibition of nuclear factor κB, 
cyclooxygenase II, activator protein 1, cyclins, p53 and PARP may 
have played a crucial role in increasing the radiation-induced DNA 
damage [69,71-75], which may have contributed in their own way to 
enhance the radiation-induced DNA damage in the present study. 
The increased DNA damage by berberine may have also resulted in 
the apoptosis of cells leading to decreased cell survival. Berberine 
has been reported to activate caspase 8 and 9 which are essential in 
induction of apoptosis [75].

Conclusion
Berberine might have enhanced radiation-induced DNA damage 

either by increasing the radiation-induced ROS, lipid peroxidation, 
lactate dehydrogenase release or by suppressing topoisomerase II. 
It may also have blocked the transactivation of nuclear factor κB, 
suppressed the expression of cyclooxygenase II, activator protein 
1, cyclins, p53 and PARP and other DNA repair enzymes leading to 
increased DNA damage and reduction in the survival of HeLa cells.
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